Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States.
Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States; Medical Scientist Training Program, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States.
Adv Immunol. 2024;161:53-83. doi: 10.1016/bs.ai.2024.03.001. Epub 2024 May 3.
Our innate immune system uses pattern recognition receptors (PRRs) as a first line of defense to detect microbial ligands and initiate an immune response. Viral nucleic acids are key ligands for the activation of many PRRs and the induction of downstream inflammatory and antiviral effects. Initially it was thought that endogenous (self) nucleic acids rarely activated these PRRs, however emerging evidence indicates that endogenous nucleic acids are able to activate host PRRs in homeostasis and disease. In fact, many regulatory mechanisms are in place to finely control and regulate sensing of self-nucleic acids by PRRs. Sensing of self-nucleic acids is particularly important in the brain, as perturbations to nucleic acid sensing commonly leads to neuropathology. This review will highlight the role of nucleic acid sensors in the brain, both in disease and homeostasis. We also indicate the source of endogenous stimulatory nucleic acids where known and summarize future directions for the study of this growing field.
我们的先天免疫系统使用模式识别受体 (PRR) 作为第一道防线,以检测微生物配体并引发免疫反应。病毒核酸是激活许多 PRR 并诱导下游炎症和抗病毒作用的关键配体。最初人们认为内源性(自身)核酸很少激活这些 PRR,但新出现的证据表明,内源性核酸能够在稳态和疾病中激活宿主 PRR。事实上,许多调节机制都可以精细地控制和调节 PRR 对自身核酸的感应。核酸感应在大脑中尤为重要,因为核酸感应的干扰通常会导致神经病理学。本综述将重点介绍核酸传感器在大脑中的作用,包括在疾病和稳态中的作用。我们还指出了已知内源性刺激核酸的来源,并总结了这一不断发展领域的未来研究方向。