Suppr超能文献

一种海绵状载褪黑素纳米纤维支架通过改善线粒体能量代谢促进血管化骨再生。

A sponge-like nanofiber melatonin-loaded scaffold accelerates vascularized bone regeneration via improving mitochondrial energy metabolism.

作者信息

Lv Nanning, Hou Mingzhuang, Deng Lei, Hua Xi, Zhou Xinfeng, Liu Hao, Zhu Xuesong, Xu Yong, Qian Zhonglai, Li Qing, Liu Mingming, He Fan

机构信息

Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.

Department of Orthopaedics, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China.

出版信息

Mater Today Bio. 2024 May 3;26:101078. doi: 10.1016/j.mtbio.2024.101078. eCollection 2024 Jun.

Abstract

Electrospun nanofibers have been widely employed in bone tissue engineering for their ability to mimic the micro to nanometer scale network of the native bone extracellular matrix. However, the dense fibrous structure and limited mechanical support of these nanofibers pose challenges for the treatment of critical size bone defects. In this study, we propose a facile approach for creating a three-dimensional scaffold using interconnected electrospun nanofibers containing melatonin (Scaffold@MT). The hypothesis posited that the sponge-like Scaffold@MT could potentially enhance bone regeneration and angiogenesis by modulating mitochondrial energy metabolism. Melatonin-loaded gelatin and poly-lactic-acid nanofibers were fabricated using electrospinning, then fragmented into shorter fibers. The sponge-like Scaffold@MT was created through a process involving homogenization, low-temperature lyophilization, and chemical cross-linking, while maintaining the microstructure of the continuous nanofibers. The incorporation of short nanofibers led to a low release of melatonin and increased Young's modulus of the scaffold. Scaffold@MT demonstrated positive biocompatibility by promoting a 14.2 % increase in cell proliferation. In comparison to the control group, Scaffold@MT significantly enhanced matrix mineralization by 3.2-fold and upregulated the gene expression of osteoblast-specific markers, thereby facilitating osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). Significantly, Scaffold@MT led to a marked enhancement in the mitochondrial energy function of BMMSCs, evidenced by elevated adenosine triphosphate (ATP) production, mitochondrial membrane potential, and protein expression of respiratory chain factors. Furthermore, Scaffold@MT promoted the migration of human umbilical vein endothelial cells (HUVECs) and increased tube formation by 1.3 times compared to the control group, accompanied by an increase in vascular endothelial growth factor (VEGFA) expression. The results of experiments indicate that the implantation of Scaffold@MT significantly improved vascularized bone regeneration in a distal femur defect in rats. Micro-computed tomography analysis conducted 8 weeks post-surgery revealed that Scaffold@MT led to optimal development of new bone microarchitecture. Histological and immunohistochemical analyses demonstrated that Scaffold@MT facilitated bone matrix deposition and new blood vessel formation at the defect site. Overall, the utilization of melatonin-loaded nanofiber sponges exhibits significant promise as a scaffold that promotes bone growth and angiogenesis, making it a viable option for the repair of critical-sized bone defects.

摘要

电纺纳米纤维因其能够模拟天然骨细胞外基质的微米到纳米尺度网络而被广泛应用于骨组织工程。然而,这些纳米纤维的致密纤维结构和有限的机械支撑对临界尺寸骨缺损的治疗构成了挑战。在本研究中,我们提出了一种简便的方法,使用含有褪黑素的相互连接的电纺纳米纤维创建三维支架(Scaffold@MT)。提出的假设是,海绵状的Scaffold@MT可能通过调节线粒体能量代谢来潜在地增强骨再生和血管生成。使用静电纺丝法制备负载褪黑素的明胶和聚乳酸纳米纤维,然后将其破碎成较短的纤维。海绵状的Scaffold@MT是通过均质化、低温冻干和化学交联过程创建的,同时保持连续纳米纤维的微观结构。短纳米纤维的掺入导致褪黑素的低释放并提高了支架的杨氏模量。Scaffold@MT通过促进细胞增殖增加14.2%显示出良好的生物相容性。与对照组相比,Scaffold@MT显著增强基质矿化3.2倍,并上调成骨细胞特异性标志物的基因表达,从而促进骨髓间充质干细胞(BMMSCs)的成骨分化。值得注意的是,Scaffold@MT导致BMMSCs的线粒体能量功能显著增强,表现为三磷酸腺苷(ATP)产量增加、线粒体膜电位升高以及呼吸链因子的蛋白表达增加。此外,Scaffold@MT促进人脐静脉内皮细胞(HUVECs)的迁移,与对照组相比,管形成增加1.3倍,同时血管内皮生长因子(VEGFA)表达增加。实验结果表明,植入Scaffold@MT显著改善了大鼠股骨远端缺损处的血管化骨再生。术后8周进行的微计算机断层扫描分析显示,Scaffold@MT导致新骨微结构的最佳发育。组织学和免疫组织化学分析表明,Scaffold@MT促进了缺损部位的骨基质沉积和新血管形成。总体而言,负载褪黑素的纳米纤维海绵作为一种促进骨生长和血管生成的支架具有显著的前景,使其成为修复临界尺寸骨缺损的可行选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b293/11101953/ac487b1cf80e/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验