Suppr超能文献

通过高分辨率3D打印制备的微支架的表面功能化:新的自由度层面。

Surface functionalization of microscaffolds produced by high-resolution 3D printing: A new layer of freedom.

作者信息

Kopinski-Grünwald Oliver, Schandl Stephan, Gusev Jegor, Chamalaki Ourania Evangelia, Ovsianikov Aleksandr

机构信息

Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria.

出版信息

Mater Today Bio. 2025 Jan 3;31:101452. doi: 10.1016/j.mtbio.2025.101452. eCollection 2025 Apr.

Abstract

Scaffolded-spheroids represent novel building blocks for bottom-up tissue assembly, allowing to produce constructs with high initial cell density. Previously, we demonstrated the successful differentiation of such building blocks, produced from immortalized human adipose-derived stem cells, towards different phenotypes, and the possibility of creating macro-sized tissue-like constructs . The culture of cells depends on the supply of various nutrients and biomolecules, such as growth factors, usually supplemented in the culture medium. Another means for growth factor delivery ( and ) is the release from the scaffold to alter the biological response of surrounding cells (e.g. by release of VEGF). As a proof of concept for this approach, we sought to biofunctionalize the surface of the microscaffolds with heparin as a "universal linker" that would allow binding a variety of growth factors/biomolecules. An aminolysis step in an organic solvent made it possible to generate a hydrophilic and charged surface. The backbone of the amine, as well as reaction conditions, led to an adjustable surface modification. The amount of heparin on the surface was increased with an ethylene glycol-based diamine backbone and varied between 8 and 40 ng per microscaffold. Choosing a suitable linker allows easy adjustment of the loading of VEGF and other heparin-binding proteins. Initial results indicated that up to 5 ng VEGF could be loaded per microscaffold, generating a steady VEGF release for 16 days. We report an easy-to-perform, scalable surface modification approach of polyester-based resin that leads to adjustable surface concentrations of heparin. The successful surface aminolysis opens the route to various modifications and broadens the spectrum of biomolecules which can be delivered.

摘要

支架球体代表了自下而上组织组装的新型构建模块,能够产生具有高初始细胞密度的构建体。此前,我们已证明由永生化的人脂肪来源干细胞产生的此类构建模块能够成功分化为不同表型,并且具备创建宏观尺寸类组织构建体的可能性。细胞培养依赖于各种营养物质和生物分子的供应,比如通常添加到培养基中的生长因子。生长因子递送的另一种方式(以及)是从支架释放以改变周围细胞的生物学反应(例如通过释放血管内皮生长因子)。作为该方法的概念验证,我们试图用肝素作为“通用连接体”对微支架表面进行生物功能化,这将允许结合多种生长因子/生物分子。在有机溶剂中的氨解步骤使得生成亲水性和带电表面成为可能。胺基主链以及反应条件导致了可调节的表面修饰。基于乙二醇的二胺主链增加了表面肝素的量,每个微支架上的肝素量在8到40纳克之间变化。选择合适的连接体能够轻松调节血管内皮生长因子和其他肝素结合蛋白的负载量。初步结果表明每个微支架最多可负载5纳克血管内皮生长因子,并能持续16天稳定释放血管内皮生长因子。我们报道了一种易于实施、可扩展的基于聚酯树脂的表面修饰方法,该方法可实现肝素表面浓度的可调节。成功的表面氨解为各种修饰开辟了道路,并拓宽了可递送生物分子的范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/11783114/4eb0ef051ca8/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验