Buchalter R Blake, Mohan Sumit, Schold Jesse D
Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
Kidney Int Rep. 2024 Jan 23;9(4):807-816. doi: 10.1016/j.ekir.2024.01.017. eCollection 2024 Apr.
Geospatial modeling methods in population-level kidney research have not been used to full potential because few studies have completed associative spatial analyses between risk factors and exposures and kidney conditions and outcomes. Spatial modeling has several advantages over traditional modeling, including improved estimation of statistical variation and more accurate and unbiased estimation of coefficient effect direction or magnitudes by accounting for spatial data structure. Because most population-level kidney research data are geographically referenced, there is a need for better understanding of geospatial modeling for evaluating associations of individual geolocation with processes of care and clinical outcomes. In this review, we describe common spatial models, provide details to execute these analyses, and perform a case-study to display how results differ when integrating geographic structure. In our case-study, we used U.S. nationwide 2019 chronic kidney disease (CKD) data from Centers for Disease Control and Prevention's Kidney Disease Surveillance System and 2006 to 2010 U.S. Environmental Protection Agency environmental quality index (EQI) data and fit a nonspatial count model along with global spatial models (spatially lagged model [SLM]/pseudo-spatial error model [PSEM]) and a local spatial model (geographically weighted quasi-Poisson regression [GWQPR]). We found the SLM, PSEM, and GWQPR improved model fit in comparison to the nonspatial regression, and the PSEM model decreased the positive relationship between EQI and CKD prevalence. The GWQPR also revealed spatial heterogeneity in the EQI-CKD relationship. To summarize, spatial modeling has promise as a clinical and public health translational tool, and our case-study example is an exhibition of how these analyses may be performed to improve the accuracy and utility of findings.
在人群层面的肾脏研究中,地理空间建模方法尚未得到充分利用,因为很少有研究完成风险因素与暴露因素以及肾脏疾病和结局之间的关联空间分析。与传统建模相比,空间建模具有多个优势,包括改进统计变异估计,以及通过考虑空间数据结构更准确、无偏地估计系数效应方向或大小。由于大多数人群层面的肾脏研究数据都有地理参照,因此需要更好地理解地理空间建模,以评估个体地理位置与医疗过程和临床结局之间的关联。在本综述中,我们描述了常见的空间模型,提供了执行这些分析的详细信息,并进行了一个案例研究,以展示整合地理结构时结果有何不同。在我们的案例研究中,我们使用了美国疾病控制与预防中心肾脏疾病监测系统提供的2019年美国全国慢性肾脏病(CKD)数据,以及2006年至2010年美国环境保护局环境质量指数(EQI)数据,并拟合了一个非空间计数模型以及全局空间模型(空间滞后模型[SLM]/伪空间误差模型[PSEM])和局部空间模型(地理加权拟泊松回归[GWQPR])。我们发现,与非空间回归相比,SLM、PSEM和GWQPR改善了模型拟合,并且PSEM模型减弱了EQI与CKD患病率之间的正相关关系。GWQPR还揭示了EQI与CKD关系中的空间异质性。总之,空间建模有望成为一种临床和公共卫生转化工具,我们的案例研究示例展示了如何进行这些分析以提高研究结果的准确性和实用性。