Suppr超能文献

多层次模型的空间嵌套功能数据:在美国透析人群住院率的时空模式。

Multilevel modeling of spatially nested functional data: Spatiotemporal patterns of hospitalization rates in the US dialysis population.

机构信息

Department of Biostatistics, University of California, Los Angeles, California.

Department of Medicine, UC Irvine School of Medicine, Orange, California.

出版信息

Stat Med. 2021 Jul 30;40(17):3937-3952. doi: 10.1002/sim.9007. Epub 2021 Apr 26.

Abstract

End-stage renal disease patients on dialysis experience frequent hospitalizations. In addition to known temporal patterns of hospitalizations over the life span on dialysis, where poor outcomes are typically exacerbated during the first year on dialysis, variations in hospitalizations among dialysis facilities across the US contribute to spatial variation. Utilizing national data from the United States Renal Data System (USRDS), we propose a novel multilevel spatiotemporal functional model to study spatiotemporal patterns of hospitalization rates among dialysis facilities. Hospitalization rates of dialysis facilities are considered as spatially nested functional data (FD) with longitudinal hospitalizations nested in dialysis facilities and dialysis facilities nested in geographic regions. A multilevel Karhunen-Loéve expansion is utilized to model the two-level (facility and region) FD, where spatial correlations are induced among region-specific principal component scores accounting for regional variation. A new efficient algorithm based on functional principal component analysis and Markov Chain Monte Carlo is proposed for estimation and inference. We report a novel application using USRDS data to characterize spatiotemporal patterns of hospitalization rates for over 400 health service areas across the US and over the posttransition time on dialysis. Finite sample performance of the proposed method is studied through simulations.

摘要

终末期肾病患者接受透析治疗时经常住院。除了已知的透析期间的住院时间模式外,在透析开始的第一年,不良预后通常会恶化,美国各地透析中心的住院率变化也导致了空间变化。本研究利用美国肾脏数据系统(USRDS)的全国数据,提出了一种新的多水平时空功能模型,以研究透析中心住院率的时空模式。透析中心的住院率被视为空间嵌套功能数据(FD),其中纵向住院情况嵌套在透析中心中,而透析中心嵌套在地理区域中。利用多层次的 Karhunen-Loève 展开来对两级(中心和地区)FD 进行建模,其中空间相关性是通过特定于地区的主成分得分来引入的,这些得分反映了地区差异。我们提出了一种基于功能主成分分析和马尔可夫链蒙特卡罗的新的有效算法,用于估计和推断。我们报告了一项新的应用,使用 USRDS 数据描述了美国 400 多个卫生服务区的住院率和透析后过渡期的时空模式。通过模拟研究了该方法的有限样本性能。

相似文献

2
Multilevel Varying Coefficient Spatiotemporal Model.多层变系数时空模型
Stat. 2022 Dec;11(1). doi: 10.1002/sta4.438. Epub 2021 Nov 19.

引用本文的文献

1
Multivariate varying coefficient spatiotemporal model.多元可变系数时空模型。
Stat Biosci. 2024 Dec;16(3):761-786. doi: 10.1007/s12561-024-09419-8. Epub 2024 Feb 21.
5
Functional Approaches for Modeling Unfolding Data.用于对展开数据进行建模的功能方法。
Educ Psychol Meas. 2023 Dec;83(6):1139-1159. doi: 10.1177/00131644221143474. Epub 2023 Jan 5.
7
Fast Multilevel Functional Principal Component Analysis.快速多级功能主成分分析
J Comput Graph Stat. 2023;32(2):366-377. doi: 10.1080/10618600.2022.2115500. Epub 2022 Oct 7.
8
Multilevel Varying Coefficient Spatiotemporal Model.多层变系数时空模型
Stat. 2022 Dec;11(1). doi: 10.1002/sta4.438. Epub 2021 Nov 19.

本文引用的文献

5
Longitudinal Functional Models with Structured Penalties.具有结构化惩罚的纵向功能模型
Stat Modelling. 2016 Apr;16(2):114-139. doi: 10.1177/1471082X15626291. Epub 2016 Feb 17.
7
A multi-dimensional functional principal components analysis of EEG data.脑电图数据的多维功能主成分分析
Biometrics. 2017 Sep;73(3):999-1009. doi: 10.1111/biom.12635. Epub 2017 Jan 10.
8
Functional CAR models for large spatially correlated functional datasets.用于大型空间相关功能数据集的功能CAR模型。
J Am Stat Assoc. 2016;111(514):772-786. doi: 10.1080/01621459.2015.1042581. Epub 2016 Aug 18.
9
Longitudinal Functional Data Analysis.纵向功能数据分析
Stat (Int Stat Inst). 2015;4(1):212-226. doi: 10.1002/sta4.89. Epub 2015 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验