Suppr超能文献

若事情重要我不会忘记去做:基于事件的前瞻性记忆中社会重要性和金钱奖励的多项式加工树分析

I Won't Forget to Do It If It's Important: A Multinomial Processing Tree Analysis of Social Importance and Monetary Reward on Event-Based Prospective Memory.

作者信息

Blondelle Geoffrey, Quaglino Véronique, Gounden Yannick, Dethoor Anaïs, Duclos Harmony, Hainselin Mathieu

机构信息

CRP-CPO, UR UPJV 7273, Universitéde Picardie Jules Verne, Amiens, France.

INSPÉ de l'académie d'Amiens, Université de Picardie Jules Verne, Amiens, France.

出版信息

J Cogn. 2024 May 15;7(1):43. doi: 10.5334/joc.367. eCollection 2024.

Abstract

While previous research has suggested that prospective memory may be enhanced by providing a social motive (i.e., social importance) or by promising a monetary reward for successful performance, to the best of our knowledge, the underlying mechanisms responsible for these effects are still largely unexplored. In a sample of 96 younger adults, this study investigated how social importance and promising a monetary reward influence the prospective component and the retrospective component of event-based prospective memory separately, with the application of a multinomial modeling approach. Results revealed enhanced prospective memory performance for all importance conditions compared to a standard condition. This improvement was characterized by an increased allocation of resource-demanding attentional processes in performing the prospective memory task at the expense of the ongoing task without an increase in the perceived importance of the prospective memory task. The model-based analyses showed that the beneficial effects of importance arise from an increased engagement of the prospective component, leaving the estimates for the retrospective component unaffected.

摘要

虽然先前的研究表明,提供社会动机(即社会重要性)或承诺对成功执行给予金钱奖励可能会增强前瞻记忆,但据我们所知,造成这些影响的潜在机制在很大程度上仍未得到探索。在一个由96名年轻人组成的样本中,本研究采用多项建模方法,分别调查了社会重要性和承诺给予金钱奖励如何影响基于事件的前瞻记忆的前瞻成分和回顾成分。结果显示,与标准条件相比,所有重要性条件下的前瞻记忆表现均有所增强。这种改善的特点是,在前瞻记忆任务中,资源需求较高的注意力过程的分配增加,这是以正在进行的任务为代价的,而前瞻记忆任务的感知重要性并未增加。基于模型的分析表明,重要性的有益影响源于前瞻成分参与度的提高,而回顾成分的估计不受影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6609/11100544/4b2dd561e77c/joc-7-1-367-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验