Suppr超能文献

用于放射肿瘤学临床决策的马尔可夫模型:系统评价。

Markov models for clinical decision-making in radiation oncology: A systematic review.

机构信息

Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Department of Computational Applied Mathematics & Operations Research, Rice University, Houston, Texas, USA.

出版信息

J Med Imaging Radiat Oncol. 2024 Aug;68(5):610-623. doi: 10.1111/1754-9485.13656. Epub 2024 May 20.

Abstract

The intrinsic stochasticity of patients' response to treatment is a major consideration for clinical decision-making in radiation therapy. Markov models are powerful tools to capture this stochasticity and render effective treatment decisions. This paper provides an overview of the Markov models for clinical decision analysis in radiation oncology. A comprehensive literature search was conducted within MEDLINE using PubMed, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Only studies published from 2000 to 2023 were considered. Selected publications were summarized in two categories: (i) studies that compare two (or more) fixed treatment policies using Monte Carlo simulation and (ii) studies that seek an optimal treatment policy through Markov Decision Processes (MDPs). Relevant to the scope of this study, 61 publications were selected for detailed review. The majority of these publications (n = 56) focused on comparative analysis of two or more fixed treatment policies using Monte Carlo simulation. Classifications based on cancer site, utility measures and the type of sensitivity analysis are presented. Five publications considered MDPs with the aim of computing an optimal treatment policy; a detailed statement of the analysis and results is provided for each work. As an extension of Markov model-based simulation analysis, MDP offers a flexible framework to identify an optimal treatment policy among a possibly large set of treatment policies. However, the applications of MDPs to oncological decision-making have been understudied, and the full capacity of this framework to render complex optimal treatment decisions warrants further consideration.

摘要

患者对治疗反应的内在随机性是放射治疗临床决策的一个主要考虑因素。马尔可夫模型是捕捉这种随机性并做出有效治疗决策的有力工具。本文对放射肿瘤学中用于临床决策分析的马尔可夫模型进行了综述。按照系统评价和荟萃分析的首选报告项目(PRISMA)指南,在 MEDLINE 中使用 PubMed 进行了全面的文献检索。仅考虑 2000 年至 2023 年发表的研究。将选定的出版物总结为两类:(i)使用蒙特卡罗模拟比较两种(或更多)固定治疗策略的研究,以及(ii)通过马尔可夫决策过程(MDP)寻求最佳治疗策略的研究。与本研究范围相关,选择了 61 篇出版物进行详细审查。这些出版物中的大多数(n=56)侧重于使用蒙特卡罗模拟比较两种或更多固定治疗策略。基于癌症部位、效用衡量标准和敏感性分析类型进行了分类。有五篇出版物考虑了 MDP,目的是计算最佳治疗策略;为每一项工作都提供了详细的分析和结果说明。作为基于马尔可夫模型的模拟分析的扩展,MDP 为在可能的大量治疗策略中确定最佳治疗策略提供了一个灵活的框架。然而,MDP 在肿瘤学决策中的应用研究不足,需要进一步考虑这个框架在制定复杂的最佳治疗决策方面的全部能力。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验