Suppr超能文献

优化高复杂性医院的磁共振成像(MRI)排程:一种数字孪生与强化学习方法

Optimizing MRI Scheduling in High-Complexity Hospitals: A Digital Twin and Reinforcement Learning Approach.

作者信息

Silva-Aravena Fabián, Morales Jenny, Jayabalan Manoj, Sáez Paula

机构信息

Facultad de Ciencias Sociales y Económicas, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3460000, Chile.

School of Design, Bath Spa University, Bath BA2 9BN, UK.

出版信息

Bioengineering (Basel). 2025 Jun 9;12(6):626. doi: 10.3390/bioengineering12060626.

Abstract

Magnetic Resonance Imaging (MRI) services in high-complexity hospitals often suffer from operational inefficiencies, including suboptimal MRI machine utilization, prolonged patient waiting times, and inequitable service delivery across clinical priority levels. Addressing these challenges requires intelligent scheduling strategies capable of dynamically managing patient waitlists based on clinical urgency while optimizing resource allocation. In this study, we propose a novel framework that integrates a digital twin (DT) of the MRI operational environment with a reinforcement learning (RL) agent trained via Deep Q-Networks (DQN). The digital twin simulates realistic hospital dynamics using parameters extracted from a MRI publicly available dataset, modeling patient arrivals, examination durations, MRI machine reliability, and clinical priority stratifications. Our strategy learns policies that maximize MRI machine utilization, minimize average waiting times, and ensure fairness by prioritizing urgent cases in the patient waitlist. Our approach outperforms traditional baselines, achieving a 14.5% increase in MRI machine utilization, a 44.8% reduction in average patient waiting time, and substantial improvements in priority-weighted fairness compared to First-Come-First-Served (FCFS) and static priority heuristics. Our strategy is designed to support hospital deployment, offering scalability, adaptability to dynamic operational conditions, and seamless integration with existing healthcare information systems. By advancing the use of digital twins and reinforcement learning in healthcare operations, our work provides a promising pathway toward optimizing MRI services, improving patient satisfaction, and enhancing clinical outcomes in complex hospital environments.

摘要

高复杂性医院的磁共振成像(MRI)服务常常存在运营效率低下的问题,包括MRI机器利用不充分、患者等待时间延长以及不同临床优先级别的服务提供不均衡。应对这些挑战需要智能调度策略,能够基于临床紧急程度动态管理患者等待名单,同时优化资源分配。在本研究中,我们提出了一个新颖的框架,该框架将MRI运营环境的数字孪生(DT)与通过深度Q网络(DQN)训练的强化学习(RL)智能体相结合。数字孪生使用从公开可用的MRI数据集中提取的参数模拟现实的医院动态,对患者到达情况、检查时长、MRI机器可靠性以及临床优先级分层进行建模。我们的策略学习能使MRI机器利用率最大化、平均等待时间最小化并通过在患者等待名单中优先处理紧急病例来确保公平性的策略。我们的方法优于传统基线方法,与先到先服务(FCFS)和静态优先级启发式方法相比,MRI机器利用率提高了14.5%,平均患者等待时间减少了44.8%,并且在优先级加权公平性方面有显著改善。我们的策略旨在支持医院部署,具有可扩展性、对动态运营条件的适应性以及与现有医疗信息系统的无缝集成能力。通过推动数字孪生和强化学习在医疗运营中的应用,我们的工作为优化MRI服务、提高患者满意度以及改善复杂医院环境中的临床结果提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d36b/12189641/f5e76082762c/bioengineering-12-00626-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验