Tang Jun-Hao, Jia Shao-Qing, Liu Jia-Ting, Yang Lu, Sun Hai-Yan, Feng Mei-Ling, Huang Xiao-Ying
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, PR China.
University of Chinese Academy of Sciences, 100049, Beijing, PR China.
Nat Commun. 2024 May 20;15(1):4281. doi: 10.1038/s41467-024-48565-x.
Highly selective capture of radiocesium is an urgent need for environmental radioactive contamination remediation and spent fuel disposal. Herein, a strategy is proposed for construction of "inorganic ion-imprinted adsorbents" with ion recognition-separation capabilities, and a metal sulfide CsGaSnS·HO (FJSM-CGTS) with "imprinting effect" on Cs is prepared. We show that the K activation product of FJSM-CGTS, CsKGaSnS·HO (FJMS-KCGTS), can reach adsorption equilibrium for Cs within 5 min, with a maximum adsorption capacity of 246.65 mg·g. FJMS-KCGTS overcomes the hindrance of Cs adsorption by competing ions and realizes highly selective capture of Cs in complex environments. It shows successful cleanup for actual Cs-liquid-wastes generated during industrial production with removal rates of over 99%. Ion-exchange column filled with FJMS-KCGTS can efficiently treat 540 mL Cs-containing solutions (31.995 mg·L) and generates only 0.12 mL of solid waste, which enables waste solution volume reduction. Single-crystal structural analysis and density functional theory calculations are used to visualize the "ion-imprinting" process and confirm that the "imprinting effect" originates from the spatially confined effect of the framework. This work clearly reveals radiocesium capture mechanism and structure-function relationships that could inspire the development of efficient inorganic adsorbents for selective recognition and separation of key radionuclides.
对放射性铯进行高选择性捕获是环境放射性污染修复和乏燃料处理的迫切需求。在此,我们提出了一种构建具有离子识别-分离能力的“无机离子印迹吸附剂”的策略,并制备了一种对铯具有“印迹效应”的金属硫化物CsGaSnS·HO(FJSM-CGTS)。我们发现,FJSM-CGTS的钾活化产物CsKGaSnS·HO(FJMS-KCGTS)在5分钟内即可达到对铯的吸附平衡,最大吸附容量为246.65 mg·g 。FJMS-KCGTS克服了竞争离子对铯吸附的阻碍,实现了在复杂环境中对铯的高选择性捕获。它成功地清理了工业生产过程中产生的实际铯废液,去除率超过99%。填充FJMS-KCGTS的离子交换柱能够高效处理540 mL含铯溶液(31.995 mg·L),仅产生0.12 mL固体废物,实现了废液体积的减少。通过单晶结构分析和密度泛函理论计算来可视化“离子印迹”过程,并证实“印迹效应”源于骨架的空间限制效应。这项工作清楚地揭示了放射性铯的捕获机制和结构-功能关系,这可能会激发开发用于选择性识别和分离关键放射性核素的高效无机吸附剂。