Suppr超能文献

存在非比例风险时生存结局的贝叶斯成对荟萃分析:灵活参数、分段指数和分数多项式模型的模拟研究。

Bayesian pairwise meta-analysis of time-to-event outcomes in the presence of non-proportional hazards: A simulation study of flexible parametric, piecewise exponential and fractional polynomial models.

机构信息

Biostatistics Research Group, Department of Population Health Sciences, University of Leicester, Leicester, UK.

Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Stockholm, Sweden.

出版信息

Res Synth Methods. 2024 Sep;15(5):780-801. doi: 10.1002/jrsm.1722. Epub 2024 May 21.

Abstract

BACKGROUND

Traditionally, meta-analysis of time-to-event outcomes reports a single pooled hazard ratio assuming proportional hazards (PH). For health technology assessment evaluations, hazard ratios are frequently extrapolated across a lifetime horizon. However, when treatment effects vary over time, an assumption of PH is not always valid. The Royston-Parmar (RP), piecewise exponential (PE), and fractional polynomial (FP) models can accommodate non-PH and provide plausible extrapolations of survival curves beyond observed data.

METHODS

Simulation study to assess and compare the performance of RP, PE, and FP models in a Bayesian framework estimating restricted mean survival time difference (RMSTD) at 50 years from a pairwise meta-analysis with evidence of non-PH. Individual patient data were generated from a mixture Weibull distribution. Twelve scenarios were considered varying the amount of follow-up data, number of trials in a meta-analysis, non-PH interaction coefficient, and prior distributions. Performance was assessed through bias and mean squared error. Models were applied to a metastatic breast cancer example.

RESULTS

FP models performed best when the non-PH interaction coefficient was 0.2. RP models performed best in scenarios with complete follow-up data. PE models performed well on average across all scenarios. In the metastatic breast cancer example, RMSTD at 50-years ranged from -14.6 to 8.48 months.

CONCLUSIONS

Synthesis of time-to-event outcomes and estimation of RMSTD in the presence of non-PH can be challenging and computationally intensive. Different approaches make different assumptions regarding extrapolation and sensitivity analyses varying key assumptions are essential to check the robustness of conclusions to different assumptions for the underlying survival function.

摘要

背景

传统上,对生存时间结局的荟萃分析报告了一个假设比例风险(PH)的单一汇总风险比。对于卫生技术评估评估,风险比经常在终生范围内外推。然而,当治疗效果随时间变化时,PH 的假设并不总是有效。Royston-Parmar(RP)、分段指数(PE)和分数多项式(FP)模型可以适应非 PH 情况,并对观察数据之外的生存曲线进行合理外推。

方法

模拟研究,在贝叶斯框架中评估和比较 RP、PE 和 FP 模型在估计来自具有非 PH 证据的成对荟萃分析的 50 年限制性平均生存时间差(RMSTD)时的性能。个体患者数据来自混合 Weibull 分布生成。考虑了 12 种情况,包括随访数据量、荟萃分析中的试验数量、非 PH 交互系数和先验分布。通过偏差和均方误差评估性能。模型应用于转移性乳腺癌示例。

结果

当非 PH 交互系数为 0.2 时,FP 模型表现最佳。RP 模型在具有完整随访数据的情况下表现最佳。PE 模型在所有情况下的表现平均良好。在转移性乳腺癌示例中,50 年 RMSTD 范围从-14.6 到 8.48 个月。

结论

在存在非 PH 的情况下对生存时间结局进行综合分析并估计 RMSTD 具有挑战性且计算密集。不同的方法对外推和敏感性分析有不同的假设,这些假设因关键假设而异,因此检查结论对不同的基础生存函数假设的稳健性至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验