Dos Reis Glaydson Simoes, de Oliveira Helinando Pequeno, Candido Iuri Custodio Montes, Freire Andre Luiz, Molaiyan Palanivel, Dotto Guilherme Luiz, Grimm Alejandro, Mikkola Jyri-Pekka
Department of Forest Biomaterials and Technology, Biomass Technology Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden.
Institute of Materials Science, Federal University of Sao Francisco Valley, Petrolina, 56304-205, Brazil.
Sci Rep. 2024 May 21;14(1):11555. doi: 10.1038/s41598-024-61173-5.
The development of supporting materials based on carbon nanotubes (CNTs) impregnated with iron nanoparticles via a sustainable and green synthesis employing plant extract of Punica granatum L. leaves was carried out for the iron nanoparticle modification and the following impregnation into the carbon nanotubes composites (CNT-Fe) that were also coated with polypyrrole (CNT-Fe + PPy) for use as electrode for supercapacitor and triboelectric nanogenerators. The electrochemical characterization of the materials by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) assays revealed that the CNT-Fe + PPy gave rise to better performance due to the association of double-layer capacitance behavior of carbon derivative in association with the pseudocapacitance contribution of PPy resulting in an areal capacitance value 202 mF/ cm for the overall composite. In terms of the application of electrodes in triboelectric nanogenerators, the best performance for the composite of CNT-Fe + PPy was 60 V for output voltage and power density of 6 μW/cm. The integrated system showed that the supercapacitors can be charged directly by the nanogenerator from 0 to 42 mV in 300 s. The successful green synthesis of iron nanoparticles on CNT and further PPy coating provides a feasible method for the design and synthesis of high-performance SCs and TENGs electrode materials. This work provides a systematic approach that moves the research front forward by generating data that underpins further research in self-powered electronic devices.
通过可持续绿色合成方法,利用石榴树叶提取物将铁纳米颗粒浸渍到碳纳米管(CNT)上,制备了支撑材料,用于铁纳米颗粒改性,并随后将其浸渍到碳纳米管复合材料(CNT-Fe)中,该复合材料还涂覆有聚吡咯(CNT-Fe + PPy),用作超级电容器和摩擦纳米发电机的电极。通过循环伏安法(CV)和恒电流充放电(GCD)测试对材料进行电化学表征,结果表明,由于碳衍生物的双层电容行为与聚吡咯的赝电容贡献相结合,CNT-Fe + PPy表现出更好的性能,整个复合材料的面积电容值为202 mF/cm²。就电极在摩擦纳米发电机中的应用而言,CNT-Fe + PPy复合材料的最佳性能为输出电压60 V,功率密度为6 μW/cm²。集成系统表明,超级电容器可在300 s内由纳米发电机直接从0充电至42 mV。在碳纳米管上成功进行铁纳米颗粒的绿色合成并进一步涂覆聚吡咯,为高性能超级电容器和摩擦纳米发电机电极材料的设计与合成提供了一种可行方法。这项工作提供了一种系统方法,通过生成支持自供电电子设备进一步研究的数据,推动了研究前沿的发展。