IEEE J Biomed Health Inform. 2022 Nov;26(11):5540-5550. doi: 10.1109/JBHI.2022.3182722. Epub 2022 Nov 10.
The apical four-chamber (A4C) view in fetal echocardiography is a prenatal examination widely used for the early diagnosis of congenital heart disease (CHD). Accurate segmentation of A4C key anatomical structures is the basis for automatic measurement of growth parameters and necessary disease diagnosis. However, due to the ultrasound imaging arising from artefacts and scattered noise, the variability of anatomical structures in different gestational weeks, and the discontinuity of anatomical structure boundaries, accurately segmenting the fetal heart organ in the A4C view is a very challenging task. To this end, we propose to combine an explicit Feature Pyramid Network (FPN), MobileNet and UNet, i.e., MobileUNet-FPN, for the segmentation of 13 key heart structures. To our knowledge, this is the first AI-based method that can segment so many anatomical structures in fetal A4C view. We split the MobileNet backbone network into four stages and use the features of these four phases as the encoder and the upsampling operation as the decoder. We build an explicit FPN network to enhance multi-scale semantic information and ultimately generate segmentation masks of key anatomical structures. In addition, we design a multi-level edge computing system and deploy the distributed edge nodes in different hospitals and city servers, respectively. Then, we train the MobileUNet-FPN model in parallel at each edge node to effectively reduce the network communication overhead. Extensive experiments are conducted and the results show the superior performance of the proposed model on the fetal A4C and femoral-length images.
胎儿超声心动图的四腔心(A4C)切面是一种广泛用于先天性心脏病(CHD)早期诊断的产前检查。准确分割 A4C 关键解剖结构是自动测量生长参数和必要疾病诊断的基础。然而,由于超声成像会产生伪影和散射噪声,不同孕龄周的解剖结构的可变性,以及解剖结构边界的不连续性,准确分割 A4C 视图中的胎儿心脏器官是一项极具挑战性的任务。为此,我们提出将显式特征金字塔网络(FPN)、MobileNet 和 UNet 结合起来,即 MobileUNet-FPN,用于 13 个关键心脏结构的分割。据我们所知,这是第一个可以分割胎儿 A4C 视图中如此多解剖结构的基于人工智能的方法。我们将 MobileNet 骨干网络分成四个阶段,并将这些四个阶段的特征用作编码器,将上采样操作用作解码器。我们构建了显式 FPN 网络,以增强多尺度语义信息,并最终生成关键解剖结构的分割掩模。此外,我们设计了一个多层次的边缘计算系统,并将分布式边缘节点分别部署在不同的医院和城市服务器中。然后,我们在每个边缘节点上并行训练 MobileUNet-FPN 模型,以有效减少网络通信开销。进行了广泛的实验,结果表明,所提出的模型在胎儿 A4C 和股骨长度图像上具有优越的性能。