Suppr超能文献

建立预测小肝细胞癌患者微血管侵犯和早期复发的列线图。

Nomograms established for predicting microvascular invasion and early recurrence in patients with small hepatocellular carcinoma.

机构信息

Department of Hepatological Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.

出版信息

BMC Cancer. 2024 Aug 1;24(1):929. doi: 10.1186/s12885-024-12655-2.

Abstract

BACKGROUND

In this study, we aimed to establish nomograms to predict the microvascular invasion (MVI) and early recurrence in patients with small hepatocellular carcinoma (SHCC), thereby guiding individualized treatment strategies for prognosis improvement.

METHODS

This study retrospectively analyzed 326 SHCC patients who underwent radical resection at Wuhan Union Hospital between April 2017 and January 2022. They were randomly divided into a training set and a validation set at a 7:3 ratio. The preoperative nomogram for MVI was constructed based on univariate and multivariate logistic regression analysis, and the prognostic nomogram for early recurrence was constructed based on univariate and multivariate Cox regression analysis. We used the receiver operating characteristic (ROC) curves, area under the curves (AUCs), and calibration curves to estimate the predictive accuracy and discriminability of nomograms. Decision curve analysis (DCA) and Kaplan-Meier survival curves were employed to further confirm the clinical effectiveness of nomograms.

RESULTS

The AUCs of the preoperative nomogram for MVI on the training set and validation set were 0.749 (95%CI: 0.684-0.813) and 0.856 (95%CI: 0.805-0.906), respectively. For the prognostic nomogram, the AUCs of 1-year and 2-year RFS respectively reached 0.839 (95%CI: 0.775-0.903) and 0.856 (95%CI: 0.806-0.905) in the training set, and 0.808 (95%CI: 0.719-0.896) and 0.874 (95%CI: 0.804-0.943) in the validation set. Subsequent calibration curves, DCA analysis and Kaplan-Meier survival curves demonstrated the high accuracy and efficacy of the nomograms for clinical application.

CONCLUSIONS

The nomograms we constructed could effectively predict MVI and early recurrence in SHCC patients, providing a basis for clinical decision-making.

摘要

背景

本研究旨在建立预测小肝细胞癌(SHCC)患者微血管侵犯(MVI)和早期复发的列线图,从而为改善预后提供个体化治疗策略。

方法

本研究回顾性分析了 2017 年 4 月至 2022 年 1 月在武汉协和医院接受根治性切除术的 326 例 SHCC 患者。他们按 7:3 的比例随机分为训练集和验证集。基于单因素和多因素逻辑回归分析,建立 MVI 的术前列线图,基于单因素和多因素 Cox 回归分析,建立早期复发的预后列线图。我们使用接受者操作特征(ROC)曲线、曲线下面积(AUC)和校准曲线来评估列线图的预测准确性和区分度。决策曲线分析(DCA)和 Kaplan-Meier 生存曲线进一步证实了列线图的临床有效性。

结果

训练集和验证集术前 MVI 列线图的 AUC 分别为 0.749(95%CI:0.684-0.813)和 0.856(95%CI:0.805-0.906)。对于预后列线图,1 年和 2 年 RFS 的 AUC 在训练集分别达到 0.839(95%CI:0.775-0.903)和 0.856(95%CI:0.806-0.905),在验证集分别达到 0.808(95%CI:0.719-0.896)和 0.874(95%CI:0.804-0.943)。随后的校准曲线、DCA 分析和 Kaplan-Meier 生存曲线表明,该列线图具有较高的临床应用准确性和疗效。

结论

我们构建的列线图可有效预测 SHCC 患者的 MVI 和早期复发,为临床决策提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/11293125/6b9933687585/12885_2024_12655_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验