Suppr超能文献

通过深度学习生存神经网络整合心肺运动测试中的逐次呼吸测量数据和临床数据来预测心力衰竭的预后。

Predicting heart failure outcomes by integrating breath-by-breath measurements from cardiopulmonary exercise testing and clinical data through a deep learning survival neural network.

作者信息

Ross Heather J, Peikari Mohammad, Vishram-Nielsen Julie K K, Fan Chun-Po S, Hearn Jason, Walker Mike, Crowdy Edgar, Alba Ana Carolina, Manlhiot Cedric

机构信息

The Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Department of Medicine, University of Toronto, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada.

The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University, 1800 Orleans Street, Baltimore, MD 21287, USA.

出版信息

Eur Heart J Digit Health. 2024 Jan 31;5(3):324-334. doi: 10.1093/ehjdh/ztae005. eCollection 2024 May.

Abstract

AIMS

Mathematical models previously developed to predict outcomes in patients with heart failure (HF) generally have limited performance and have yet to integrate complex data derived from cardiopulmonary exercise testing (CPET), including breath-by-breath data. We aimed to develop and validate a time-to-event prediction model using a deep learning framework using the DeepSurv algorithm to predict outcomes of HF.

METHODS AND RESULTS

Inception cohort of 2490 adult patients with high-risk cardiac conditions or HF underwent CPET with breath-by-breath measurements. Potential predictive features included known clinical indicators, standard summary statistics from CPETs, and mathematical features extracted from the breath-by-breath time series of 13 measurements. The primary outcome was a composite of death, heart transplant, or mechanical circulatory support treated as a time-to-event outcomes. Predictive features ranked as most important included many of the features engineered from the breath-by-breath data in addition to traditional clinical risk factors. The prediction model showed excellent performance in predicting the composite outcome with an area under the curve of 0.93 in the training and 0.87 in the validation data sets. Both the predicted vs. actual freedom from the composite outcome and the calibration of the prediction model were excellent. Model performance remained stable in multiple subgroups of patients.

CONCLUSION

Using a combined deep learning and survival algorithm, integrating breath-by-breath data from CPETs resulted in improved predictive accuracy for long-term (up to 10 years) outcomes in HF. DeepSurv opens the door for future prediction models that are both highly performing and can more fully use the large and complex quantity of data generated during the care of patients with HF.

摘要

目的

先前开发的用于预测心力衰竭(HF)患者预后的数学模型通常性能有限,且尚未整合来自心肺运动试验(CPET)的复杂数据,包括逐次呼吸数据。我们旨在使用深度学习框架和DeepSurv算法开发并验证一个事件发生时间预测模型,以预测HF的预后。

方法和结果

2490例患有高危心脏疾病或HF的成年患者组成的初始队列接受了带有逐次呼吸测量的CPET。潜在的预测特征包括已知的临床指标、CPET的标准汇总统计数据,以及从13项测量的逐次呼吸时间序列中提取的数学特征。主要结局是将死亡、心脏移植或机械循环支持作为事件发生时间结局的综合指标。排名最重要的预测特征除了传统临床危险因素外,还包括许多从逐次呼吸数据中设计的特征。该预测模型在预测综合结局方面表现出色,训练数据集的曲线下面积为0.93,验证数据集的曲线下面积为0.87。预测的与实际的无综合结局生存率以及预测模型的校准均表现出色。模型性能在多个患者亚组中保持稳定。

结论

使用深度学习和生存算法相结合,整合CPET的逐次呼吸数据可提高对HF患者长期(长达10年)预后的预测准确性。DeepSurv为未来高性能且能更充分利用HF患者护理期间产生的大量复杂数据的预测模型打开了大门。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9661/11104469/8240eea66c4c/ztae005_ga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验