Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network (J.H., H.J.R., J.D., M.W., A.C.A., C.M.).
Cardiovascular Data Management Centre, The Hospital for Sick Children (J.H., B.M., C.-P.F., E.C., C.M.), University of Toronto, Ontario, Canada.
Circ Heart Fail. 2018 Aug;11(8):e005193. doi: 10.1161/CIRCHEARTFAILURE.118.005193.
Background Prognostication of heart failure patients from cardiopulmonary exercise test (CPET) currently involves simplification of complex time-series data into summary indices. We hypothesized that prognostication could be improved by considering the totality of the data generated during a CPET, instead of using summary indices alone. Methods and Results Complete data from 1156 CPETs were used to predict clinical deterioration (characterized by initiation of mechanical circulatory support, listing for heart transplantation or mortality) 1 year post-CPET. We compared the prognostic value (area under the receiver operating characteristic curve) of (1) the most predictive summary indices, (2) staged data collected at discrete intervals using multivariable regression models, and (3) breath-by-breath data using a feedforward neural network. The top-performing models were compared with the commonly used CPET risk score, using absolute net reclassification index. All models were trained and assessed using a 100-iteration Monte Carlo cross-validation. A total of 190 (16.4%) patients experienced clinical deterioration. The summary indices demonstrated subpar discriminative value (area under the receiver operating characteristic curve ≤0.800). Each multivariable model outperformed the summary indices, with the neural network incorporating breath-by-breath data achieving the best performance (area under the receiver operating characteristic curve =0.842). When compared with the CPET risk score (area under the receiver operating characteristic curve =0.759), the top-performing model obtained a net reclassification index of 4.9%. Conclusions The current practice of considering summary indices in isolation fails to realize the full value of CPET data. This may lead to less accurate prognostication of patients and in consequence, inaccurate selection of patients for advanced therapy. Clinical practices, like CPET prognostication, must be continuously reevaluated to ensure optimal usage of valuable (and oft-underutilized) data sources.
背景 目前,从心肺运动试验(CPET)中预测心力衰竭患者的预后涉及将复杂的时间序列数据简化为总结指标。我们假设通过考虑 CPET 期间生成的全部数据,而不仅仅是使用总结指标,可以提高预后能力。
方法和结果 使用 1156 次 CPET 的完整数据来预测 CPET 后 1 年内临床恶化(表现为机械循环支持的启动、心脏移植或死亡)。我们比较了(1)最具预测性的总结指标、(2)使用多变量回归模型在离散时间点收集的分期数据和(3)使用前馈神经网络的逐口气数据的预后价值(接受者操作特征曲线下的面积)。使用绝对净重新分类指数将表现最好的模型与常用的 CPET 风险评分进行比较。所有模型均使用 100 次迭代蒙特卡罗交叉验证进行训练和评估。共有 190 名(16.4%)患者经历了临床恶化。总结指标显示出较差的判别能力(接受者操作特征曲线下的面积≤0.800)。每个多变量模型的表现均优于总结指标,而包含逐口气数据的神经网络的表现最佳(接受者操作特征曲线下的面积=0.842)。与 CPET 风险评分(接受者操作特征曲线下的面积=0.759)相比,表现最佳的模型获得了 4.9%的净重新分类指数。
结论 目前孤立地考虑总结指标的做法未能实现 CPET 数据的全部价值。这可能导致对患者预后的预测不够准确,进而导致对患者进行高级治疗的选择不准确。临床实践,如 CPET 预后,必须不断重新评估,以确保最佳使用有价值(且经常未充分利用)的数据来源。