European Union Reference Laboratory for Antimicrobial Resistance (EURL-AR), Research Group for Global Capacity Building, Technical University of Denmark, Kongens Lyngby, Denmark.
DIANA-Lab, Dept. of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece.
J Antimicrob Chemother. 2024 Jul 1;79(7):1657-1667. doi: 10.1093/jac/dkae161.
To characterize the genetic basis of azithromycin resistance in Escherichia coli and Salmonella collected within the EU harmonized antimicrobial resistance (AMR) surveillance programme in 2014-18 and the Danish AMR surveillance programme in 2016-19.
WGS data of 1007 E. coli [165 azithromycin resistant (MIC > 16 mg/L)] and 269 Salmonella [29 azithromycin resistant (MIC > 16 mg/L)] were screened for acquired macrolide resistance genes and mutations in rplDV, 23S rRNA and acrB genes using ResFinder v4.0, AMRFinder Plus and custom scripts. Genotype-phenotype concordance was determined for all isolates. Transferability of mef(C)-mph(G)-carrying plasmids was assessed by conjugation experiments.
mph(A), mph(B), mef(B), erm(B) and mef(C)-mph(G) were detected in E. coli and Salmonella, whereas erm(C), erm(42), ere(A) and mph(E)-msr(E) were detected in E. coli only. The presence of macrolide resistance genes, alone or in combination, was concordant with the azithromycin-resistant phenotype in 69% of isolates. Distinct mph(A) operon structures were observed in azithromycin-susceptible (n = 50) and -resistant (n = 136) isolates. mef(C)-mph(G) were detected in porcine and bovine E. coli and in porcine Salmonella enterica serovar Derby and Salmonella enterica 1,4, [5],12:i:-, flanked downstream by ISCR2 or TnAs1 and associated with IncIγ and IncFII plasmids.
Diverse azithromycin resistance genes were detected in E. coli and Salmonella from food-producing animals and meat in Europe. Azithromycin resistance genes mef(C)-mph(G) and erm(42) appear to be emerging primarily in porcine E. coli isolates. The identification of distinct mph(A) operon structures in susceptible and resistant isolates increases the predictive power of WGS-based methods for in silico detection of azithromycin resistance in Enterobacterales.
描述 2014-2018 年欧盟协调抗菌药物耐药性(AMR)监测计划和 2016-2019 年丹麦 AMR 监测计划中分离的大肠埃希菌和沙门氏菌中阿奇霉素耐药的遗传基础。
对 1007 株大肠埃希菌[165 株阿奇霉素耐药(MIC>16mg/L)]和 269 株沙门氏菌[29 株阿奇霉素耐药(MIC>16mg/L)]的 WGS 数据进行筛选,以发现获得性大环内酯类耐药基因和 rplDV、23S rRNA 和 acrB 基因中的突变,使用 ResFinder v4.0、AMRFinder Plus 和自定义脚本。确定所有分离株的基因型-表型一致性。通过接合实验评估携带 mef(C)-mph(G)-的质粒的可转移性。
在大肠埃希菌和沙门氏菌中检测到 mph(A)、mph(B)、mef(B)、erm(B)和 mef(C)-mph(G),而 erm(C)、erm(42)、ere(A)和 mph(E)-msr(E)仅在大肠埃希菌中检测到。大环内酯类耐药基因的存在,单独或组合存在,与 69%的分离株的阿奇霉素耐药表型一致。在阿奇霉素敏感(n=50)和耐药(n=136)分离株中观察到不同的 mph(A)操纵子结构。mef(C)-mph(G)在猪和牛源大肠埃希菌以及猪源肠炎沙门氏菌血清型 Derby 和肠炎沙门氏菌 1、4、[5]、12:i:-中被检测到,下游侧翼为 ISCR2 或 TnAs1,并与 IncIγ和 IncFII 质粒相关。
在欧洲的食品生产动物和肉类中检测到了不同的阿奇霉素耐药基因。在猪源大肠埃希菌分离株中,阿奇霉素耐药基因 mef(C)-mph(G)和 erm(42)似乎正在出现。在敏感和耐药分离株中鉴定出不同的 mph(A)操纵子结构,提高了基于 WGS 的方法在肠杆菌科中对阿奇霉素耐药性进行计算机预测的能力。