Suppr超能文献

一种利用时间序列患者数据预测心肌梗死发生情况的新型深度学习方法。

A Novel Deep Learning Approach for Forecasting Myocardial Infarction Occurrences with Time Series Patient Data.

作者信息

Sayed Mohammad Saiduzzaman, Rony Mohammad Abu Tareq, Islam Mohammad Shariful, Raza Ali, Tabassum Sawsan, Daoud Mohammad Sh, Migdady Hazem, Abualigah Laith

机构信息

Department of Statistics, Jahangirnagar University, Dhaka, Bangladesh.

Department of Statistics, Noakhali Science & Technology University, Noakhali, 3814, Bangladesh.

出版信息

J Med Syst. 2024 May 22;48(1):53. doi: 10.1007/s10916-024-02076-w.

Abstract

Myocardial Infarction (MI) commonly referred to as a heart attack, results from the abrupt obstruction of blood supply to a section of the heart muscle, leading to the deterioration or death of the affected tissue due to a lack of oxygen. MI, poses a significant public health concern worldwide, particularly affecting the citizens of the Chittagong Metropolitan Area. The challenges lie in both prevention and treatment, as the emergence of MI has inflicted considerable suffering among residents. Early warning systems are crucial for managing epidemics promptly, especially given the escalating disease burden in older populations and the complexities of assessing present and future demands. The primary objective of this study is to forecast MI incidence early using a deep learning model, predicting the prevalence of heart attacks in patients. Our approach involves a novel dataset collected from daily heart attack incidence Time Series Patient Data spanning January 1, 2020, to December 31, 2021, in the Chittagong Metropolitan Area. Initially, we applied various advanced models, including Autoregressive Integrated Moving Average (ARIMA), Error-Trend-Seasonal (ETS), Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal (TBATS), and Long Short Time Memory (LSTM). To enhance prediction accuracy, we propose a novel Myocardial Sequence Classification (MSC)-LSTM method tailored to forecast heart attack occurrences in patients using the newly collected data from the Chittagong Metropolitan Area. Comprehensive results comparisons reveal that the novel MSC-LSTM model outperforms other applied models in terms of performance, achieving a minimum Mean Percentage Error (MPE) score of 1.6477. This research aids in predicting the likely future course of heart attack occurrences, facilitating the development of thorough plans for future preventive measures. The forecasting of MI occurrences contributes to effective resource allocation, capacity planning, policy creation, budgeting, public awareness, research identification, quality improvement, and disaster preparedness.

摘要

心肌梗死(MI)通常被称为心脏病发作,是由于心脏肌肉的某一部分血液供应突然受阻,导致受影响的组织因缺氧而恶化或死亡。心肌梗死在全球范围内构成了重大的公共卫生问题,尤其影响吉大港都会区的居民。预防和治疗都面临挑战,因为心肌梗死的出现给居民带来了相当大的痛苦。早期预警系统对于迅速控制疫情至关重要,特别是考虑到老年人群中疾病负担的不断上升以及评估当前和未来需求的复杂性。本研究的主要目标是使用深度学习模型早期预测心肌梗死发病率,预测患者心脏病发作的患病率。我们的方法涉及从2020年1月1日至2021年12月31日吉大港都会区每日心脏病发作发病率时间序列患者数据中收集的一个新颖数据集。最初,我们应用了各种先进模型,包括自回归积分移动平均(ARIMA)、误差趋势季节性(ETS)、三角季节性、Box-Cox变换、ARMA误差、趋势和季节性(TBATS)以及长短期记忆(LSTM)。为了提高预测准确性,我们提出了一种新颖的心肌序列分类(MSC)-LSTM方法,该方法专门用于使用从吉大港都会区新收集的数据预测患者心脏病发作的发生情况。全面的结果比较表明,新颖的MSC-LSTM模型在性能方面优于其他应用模型,实现了最低平均百分比误差(MPE)得分1.6477。这项研究有助于预测心脏病发作发生的可能未来进程,促进制定全面的未来预防措施计划。心肌梗死发生情况的预测有助于有效的资源分配、能力规划、政策制定、预算编制、公众意识、研究识别、质量改进和灾难准备。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验