Alam Aneeza, Al-Shamayleh Ahmad Sami, Thalji Nisrean, Raza Ali, Morales Barajas Edgar Anibal, Thompson Ernesto Bautista, de la Torre Diez Isabel, Ashraf Imran
Faculty of Computer Science and Information Technology, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan.
Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Al-Ahliyya Amman University, Amman, 19328, Jordan.
BMC Med Imaging. 2025 Jan 3;25(1):5. doi: 10.1186/s12880-024-01546-4.
A bone fracture is a medical condition characterized by a partial or complete break in the continuity of the bone. Fractures are primarily caused by injuries and accidents, affecting millions of people worldwide. The healing process for a fracture can take anywhere from one month to one year, leading to significant economic and psychological challenges for patients. The detection of bone fractures is crucial, and radiographic images are often relied on for accurate assessment. An efficient neural network method is essential for the early detection and timely treatment of fractures. In this study, we propose a novel transfer learning-based approach called MobLG-Net for feature engineering purposes. Initially, the spatial features are extracted from bone X-ray images using a transfer model, MobileNet, and then input into a tree-based light gradient boosting machine (LGBM) model for the generation of class probability features. Several machine learning (ML) techniques are applied to the subsets of newly generated transfer features to compare the results. K-nearest neighbor (KNN), LGBM, logistic regression (LR), and random forest (RF) are implemented using the novel features with optimized hyperparameters. The LGBM and LR models trained on proposed MobLG-Net (MobileNet-LGBM) based features outperformed others, achieving an accuracy of 99% in predicting bone fractures. A cross-validation mechanism is used to evaluate the performance of each model. The proposed study can improve the detection of bone fractures using X-ray images.
骨折是一种医学状况,其特征是骨的连续性部分或完全中断。骨折主要由受伤和事故引起,影响着全球数百万人。骨折的愈合过程可能需要1个月到1年的时间,给患者带来重大的经济和心理挑战。骨折的检测至关重要,射线图像常常被用于准确评估。一种高效的神经网络方法对于骨折的早期检测和及时治疗至关重要。在本研究中,我们提出了一种名为MobLG-Net的基于迁移学习的新颖方法用于特征工程。最初,使用迁移模型MobileNet从骨X光图像中提取空间特征,然后将其输入到基于树的轻量级梯度提升机(LGBM)模型中以生成类别概率特征。几种机器学习(ML)技术被应用于新生成的迁移特征子集以比较结果。使用具有优化超参数的新颖特征实现了K近邻(KNN)、LGBM、逻辑回归(LR)和随机森林(RF)。在基于所提出的MobLG-Net(MobileNet-LGBM)的特征上训练的LGBM和LR模型表现优于其他模型,在预测骨折方面达到了99%的准确率。使用交叉验证机制来评估每个模型的性能。所提出的研究可以改进使用X光图像对骨折的检测。