Suppr超能文献

一种基于元学习的新型堆叠方法用于甲状腺综合征的诊断。

A novel meta learning based stacked approach for diagnosis of thyroid syndrome.

机构信息

Institute of Information Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.

Department of Software Engineering, University Of Lahore, Lahore, Pakistan.

出版信息

PLoS One. 2024 Nov 1;19(11):e0312313. doi: 10.1371/journal.pone.0312313. eCollection 2024.

Abstract

Thyroid syndrome, a complex endocrine disorder, involves the dysregulation of the thyroid gland, impacting vital physiological functions. Common causes include autoimmune disorders, iodine deficiency, and genetic predispositions. The effects of thyroid syndrome extend beyond the thyroid itself, affecting metabolism, energy levels, and overall well-being. Thyroid syndrome is associated with severe cases of thyroid dysfunction, highlighting the potentially life-threatening consequences of untreated or inadequately managed thyroid disorders. This research aims to propose an advanced meta-learning approach for the timely detection of Thyroid syndrome. We used a standard thyroid-balanced dataset containing 7,000 patient records to apply advanced machine-learning methods. We proposed a novel meta-learning model based on a unique stack of K-Neighbors (KN) and Random Forest (RF) models. Then, a meta-learning Logistic Regression (LR) model is built based on the collective experience of stacked models. For the first time, the novel proposed KRL (KN-RF-LR) method is employed for the effective diagnosis of Thyroid syndrome. Extensive research experiments illustrated that the novel proposed KRL outperformed state-of-the-art approaches, achieving an impressive performance accuracy of 98%. We vindicated the performance scores through k-fold cross-validation and enhanced performance using hyperparameter tuning. Our research revolutionized the timely detection of thyroid syndrome, contributing to the enhancement of human life by reducing thyroid mortality rates.

摘要

甲状腺综合征是一种复杂的内分泌紊乱,涉及甲状腺功能失调,影响重要的生理功能。常见原因包括自身免疫性疾病、碘缺乏和遗传易感性。甲状腺综合征的影响不仅限于甲状腺本身,还会影响新陈代谢、能量水平和整体健康。甲状腺综合征与严重的甲状腺功能障碍有关,突出了未经治疗或管理不当的甲状腺疾病可能带来的潜在致命后果。

本研究旨在提出一种先进的元学习方法,用于及时检测甲状腺综合征。我们使用了一个包含 7000 个患者记录的标准甲状腺平衡数据集,应用了先进的机器学习方法。我们提出了一种基于独特堆叠 K-Nearest Neighbors (KN) 和随机森林 (RF) 模型的新型元学习模型。然后,基于堆叠模型的集体经验,构建了一个元学习逻辑回归 (LR) 模型。首次采用新颖的 KRL(KN-RF-LR)方法有效诊断甲状腺综合征。

大量研究实验表明,新型提出的 KRL 优于最先进的方法,实现了令人印象深刻的 98%准确率。我们通过 k 折交叉验证验证了性能得分,并通过超参数调整提高了性能。我们的研究彻底改变了甲状腺综合征的及时检测,通过降低甲状腺死亡率,为提高人类生活质量做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f64/11530063/e40c646aaef2/pone.0312313.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验