Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
University of Tübingen Geschwister-Scholl-Platz, 72074, Tübingen, Germany.
Eur Radiol. 2024 Nov;34(11):7161-7172. doi: 10.1007/s00330-024-10767-8. Epub 2024 May 22.
Microwave lung ablation (MWA) is a minimally invasive and inexpensive alternative cancer treatment for patients who are not candidates for surgery/radiotherapy. However, a major challenge for MWA is its relatively high tumor recurrence rates, due to incomplete treatment as a result of inaccurate planning. We introduce a patient-specific, deep-learning model to accurately predict post-treatment ablation zones to aid planning and enable effective treatments.
Our IRB-approved retrospective study consisted of ablations with a single applicator/burn/vendor between 01/2015 and 01/2019. The input data included pre-procedure computerized tomography (CT), ablation power/time, and applicator position. The ground truth ablation zone was segmented from follow-up CT post-treatment. Novel deformable image registration optimized for ablation scans and an applicator-centric co-ordinate system for data analysis were applied. Our prediction model was based on the U-net architecture. The registrations were evaluated using target registration error (TRE) and predictions using Bland-Altman plots, Dice co-efficient, precision, and recall, compared against the applicator vendor's estimates.
The data included 113 unique ablations from 72 patients (median age 57, interquartile range (IQR) (49-67); 41 women). We obtained a TRE ≤ 2 mm on 52 ablations. Our prediction had no bias from ground truth ablation volumes (p = 0.169) unlike the vendor's estimate (p < 0.001) and had smaller limits of agreement (p < 0.001). An 11% improvement was achieved in the Dice score. The ability to account for patient-specific in-vivo anatomical effects due to vessels, chest wall, heart, lung boundaries, and fissures was shown.
We demonstrated a patient-specific deep-learning model to predict the ablation treatment effect prior to the procedure, with the potential for improved planning, achieving complete treatments, and reduce tumor recurrence.
Our method addresses the current lack of reliable tools to estimate ablation extents, required for ensuring successful ablation treatments. The potential clinical implications include improved treatment planning, ensuring complete treatments, and reducing tumor recurrence.
微波肺消融(MWA)是一种微创且经济实惠的癌症治疗方法,适用于不适合手术/放疗的患者。然而,MWA 的一个主要挑战是由于治疗计划不准确导致治疗不完全,肿瘤复发率相对较高。我们引入了一种基于患者的深度学习模型,以准确预测治疗后的消融区域,从而辅助计划并实现有效的治疗。
我们的这项经机构审查委员会批准的回顾性研究包括了 2015 年 1 月至 2019 年 1 月期间使用单一施源器/燃烧器/供应商进行的消融。输入数据包括术前计算机断层扫描(CT)、消融功率/时间和施源器位置。从治疗后随访 CT 中分割出实际消融区域作为ground truth。应用了专门针对消融扫描优化的可变形图像配准和以施源器为中心的坐标系统进行数据分析。我们的预测模型基于 U-net 架构。使用靶区配准误差(TRE)评估配准,使用 Bland-Altman 图、Dice 系数、精度和召回率与施源器供应商的估计值进行比较。
数据包括来自 72 名患者的 113 次消融(中位年龄 57 岁,四分位间距(IQR)(49-67);41 名女性)。我们有 52 次消融的 TRE≤2mm。与施源器供应商的估计值相比(p<0.001),我们的预测值没有与ground truth 消融体积产生偏差(p=0.169),且具有更小的一致性界限(p<0.001)。Dice 评分提高了 11%。证明了我们的模型能够考虑到血管、胸壁、心脏、肺边界和肺裂等患者体内解剖学的影响。
我们展示了一种基于患者的深度学习模型,用于在手术前预测消融治疗效果,从而有可能改善计划,实现完全治疗,并降低肿瘤复发率。
我们的方法解决了目前缺乏可靠工具来估计消融范围的问题,这对于确保成功的消融治疗至关重要。潜在的临床意义包括改善治疗计划、确保完全治疗和降低肿瘤复发率。