Suppr超能文献

使用基于深度学习的自动分割和影像组学分析预测肺消融患者的生存和复发情况。

Predicting Survival and Recurrence of Lung Ablation Patients Using Deep Learning-Based Automatic Segmentation and Radiomics Analysis.

作者信息

Zaki Hossam A, Oueidat Karim, Hsieh Celina, Zhang Helen, Collins Scott, Jiao Zhicheng, Maxwell Aaron W P

机构信息

Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA.

出版信息

Cardiovasc Intervent Radiol. 2025 Jan;48(1):16-25. doi: 10.1007/s00270-024-03912-9. Epub 2024 Nov 27.

Abstract

PURPOSE

To predict survival and tumor recurrence following image-guided thermal ablation (IGTA) of lung tumors segmented using a deep learning approach.

METHODS AND MATERIALS

A total of 113 patients who underwent IGTA for primary and metastatic lung tumors at a single institution between January 1, 2004 and July 14, 2022 were retrospectively identified. A pretrained U-Net model was applied to the dataset of pre- and post-procedure CT scans to segment lung zones. Following lung segmentation, a U-shaped encoder-decoder transformer architecture (UNETR) was trained to segment lung tumors from pre- and post-procedure CT scans, and radiomic features were automatically extracted. These features were input into a support vector machine (SVM)-based survival prediction model trained to assign rank scores to samples based on binary survival or recurrence label and follow-up time. C-index and time-dependent AUC were subsequently calculated to evaluate model performance.

RESULTS

Initial tumor segmentation using UNETR achieved a Dice score of 0.75. Applying a radiomics-based survivability prediction model to the post-procedure scans resulted in a c-index of 0.71 and a time-dependent AUC of 0.75. In contrast, when this model was applied to pre-procedure scans, it achieved a 0.56 for both metrics. For predicting time to recurrence, the radiomics-based model achieved a c-index of 0.65 and a time-dependent AUC of 0.72 on post-procedure imaging. In contrast, when this model was applied to pre-procedure scans, it achieved a 0.54 for both metrics.

CONCLUSION

Radiomic feature analysis of lung tumors following automatic segmentation by a state-of-the-art transformer-based U-NET may predict survival and recurrence following image-guided thermal ablation of pulmonary malignancies.

LEVEL OF EVIDENCE

Level 3, Retrospective cohort study.

摘要

目的

预测采用深度学习方法分割的肺肿瘤经图像引导热消融(IGTA)后的生存率和肿瘤复发情况。

方法和材料

回顾性纳入了2004年1月1日至2022年7月14日期间在单一机构接受原发性和转移性肺肿瘤IGTA治疗的113例患者。将预训练的U-Net模型应用于术前和术后CT扫描数据集以分割肺区域。在肺分割之后,训练了一种U形编码器-解码器变压器架构(UNETR),以从术前和术后CT扫描中分割肺肿瘤,并自动提取放射组学特征。将这些特征输入到基于支持向量机(SVM)的生存预测模型中,该模型经过训练,可根据二元生存或复发标签以及随访时间为样本分配排名分数。随后计算C指数和时间依赖性AUC以评估模型性能。

结果

使用UNETR进行初始肿瘤分割的Dice评分为0.75。将基于放射组学的生存能力预测模型应用于术后扫描,C指数为0.71,时间依赖性AUC为0.75。相比之下,当将该模型应用于术前扫描时,这两个指标均为0.56。对于预测复发时间,基于放射组学的模型在术后成像上的C指数为0.65,时间依赖性AUC为0.72。相比之下,当将该模型应用于术前扫描时,这两个指标均为0.54。

结论

基于先进的基于变压器的U-NET自动分割后的肺肿瘤放射组学特征分析,可能预测肺恶性肿瘤经图像引导热消融后的生存率和复发情况。

证据水平

3级,回顾性队列研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验