Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA.
Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA.
Reprod Sci. 2024 Sep;31(9):2771-2782. doi: 10.1007/s43032-024-01591-y. Epub 2024 May 22.
Preeclampsia (PE) is a leading cause of maternal and fetal mortality and morbidity. While placental dysfunction is a core underlying issue, the pathogenesis of this disorder is thought to differ between early-onset (EOPE) and late-onset (LOPE) subtypes. As recent reports suggest that small extracellular vesicles (sEVs) contribute to the development of PE, we have compared systemic sEV concentrations between normotensive, EOPE, and LOPE pregnancies. To circumvent lengthy isolation techniques and intermediate filtration steps, a streamlined approach was developed to evaluate circulating plasma sEVs from maternal plasma. Polymer-based precipitation and purification were used to isolate total systemic circulating maternal sEVs, free from bias toward specific surface marker expression or extensive subpurification. Immediate Nanoparticle Tracking Analysis (NTA) of freshly isolated sEV samples afforded a comprehensive analysis that can be completed within hours, avoiding confounding freeze-thaw effects of particle aggregation and degradation.Rather than exosomal subpopulations, our findings indicate a significant elevation in the total number of circulating maternal sEVs in patients with EOPE. This streamlined approach also preserves sEV-bound protein and microRNA (miRNA) that can be used for potential biomarker analysis. This study is one of the first to demonstrate that maternal plasma sEVs harbor full-length hypoxia inducible factor 1 alpha (HIF-1α) protein, with EOPE sEVs carrying higher levels of HIF-1α compared to control sEVs. The detection of HIF-1α and its direct signaling partner microRNA-210 (miR-210) within systemic maternal sEVs lays the groundwork for identifying how sEV signaling contributes to the development of preeclampsia. When taken together, our quantitative and qualitative results provide compelling evidence to support the translational potential of streamlined sEV analysis for future use in the clinical management of patients with EOPE.
子痫前期 (PE) 是孕产妇和胎儿死亡和发病的主要原因。虽然胎盘功能障碍是核心问题,但这种疾病的发病机制被认为在早发型 (EOPE) 和晚发型 (LOPE) 亚型之间有所不同。由于最近的报告表明小细胞外囊泡 (sEVs) 有助于 PE 的发展,我们比较了正常血压、EOPE 和 LOPE 妊娠之间的系统性 sEV 浓度。为了避免冗长的分离技术和中间过滤步骤,我们开发了一种简化的方法来评估来自母体血浆的循环血浆 sEVs。聚合物沉淀和纯化用于分离总系统循环母体 sEVs,避免了对特定表面标志物表达或广泛亚纯化的偏见。对新分离的 sEV 样本进行即时纳米颗粒跟踪分析 (NTA) 可提供全面的分析,可在数小时内完成,避免了粒子聚集和降解的冷冻 - 解冻效应的干扰。
与外泌体亚群不同,我们的研究结果表明,EOPE 患者循环母体 sEVs 的总数显着增加。这种简化的方法还保留了 sEV 结合的蛋白质和 microRNA (miRNA),可用于潜在的生物标志物分析。这项研究是第一个证明母体血浆 sEVs 携带全长缺氧诱导因子 1 阿尔法 (HIF-1α) 蛋白的研究之一,与对照 sEVs 相比,EOPE sEVs 携带更高水平的 HIF-1α。在系统性母体 sEVs 中检测到 HIF-1α及其直接信号伙伴 microRNA-210 (miR-210) 为识别 sEV 信号如何有助于子痫前期的发展奠定了基础。综上所述,我们的定量和定性结果提供了令人信服的证据,支持简化 sEV 分析在未来用于 EOPE 患者临床管理中的转化潜力。