Shandong University of Traditional Chinese Medicine, Jinan, China.
Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China.
BMC Musculoskelet Disord. 2024 May 22;25(1):402. doi: 10.1186/s12891-024-07512-z.
Osteoporosis (OP), the "silent epidemic" of our century, poses a significant challenge to public health, predominantly affecting postmenopausal women and the elderly. It evolves from mild symptoms to pronounced severity, stabilizing eventually. Unique among OP's characteristics is the altered metabolic profile of affected cells, particularly in pyrimidine metabolism (PyM), a crucial pathway for nucleotide turnover and pyrimidine decomposition. While metabolic adaptation is acknowledged as a therapeutic target in various diseases, the specific role of PyM genes (PyMGs) in OP's molecular response remains to be clarified.
In pursuit of elucidating and authenticating PyMGs relevant to OP, we embarked on a comprehensive bioinformatics exploration. This entailed the integration of Weighted Gene Co-expression Network Analysis (WGCNA) with a curated list of 37 candidate PyMGs, followed by the examination of their biological functions and pathways via Gene Set Variation Analysis (GSVA). The Least Absolute Shrinkage and Selection Operator (LASSO) technique was harnessed to identify crucial hub genes. We evaluated the diagnostic prowess of five PyMGs in OP detection and explored their correlation with OP's clinical traits, further validating their expression profiles through independent datasets (GSE2208, GSE7158, GSE56815, and GSE35956).
Our analytical rigor unveiled five PyMGs-IGKC, TMEM187, RPS11, IGLL3P, and GOLGA8N-with significant ties to OP. A deeper dive into their biological functions highlighted their roles in estrogen response modulation, cytosolic calcium ion concentration regulation, and GABAergic synaptic transmission. Remarkably, these PyMGs emerged as potent diagnostic biomarkers for OP, distinguishing affected individuals with substantial accuracy.
This investigation brings to light five PyMGs intricately associated with OP, heralding new avenues for biomarker discovery and providing insights into its pathophysiological underpinnings. These findings not only deepen our comprehension of OP's complexity but also herald the advent of more refined diagnostic and therapeutic modalities.
骨质疏松症(OP)是本世纪的“无声流行病”,对公共健康构成重大挑战,主要影响绝经后妇女和老年人。它从轻症发展到重症,最终趋于稳定。OP 的一个独特特征是受影响细胞的代谢谱发生改变,特别是嘧啶代谢(PyM),这是核苷酸周转和嘧啶分解的关键途径。虽然代谢适应已被公认为各种疾病的治疗靶点,但 PyMGs 在 OP 分子反应中的具体作用仍有待阐明。
为了阐明和验证与 OP 相关的 PyMGs,我们进行了全面的生物信息学探索。这包括将加权基因共表达网络分析(WGCNA)与经过精心挑选的 37 个候选 PyMG 相结合,然后通过基因集变异分析(GSVA)检查它们的生物学功能和途径。最小绝对收缩和选择算子(LASSO)技术用于识别关键的枢纽基因。我们评估了五个 PyMGs 在 OP 检测中的诊断能力,并通过独立数据集(GSE2208、GSE7158、GSE56815 和 GSE35956)进一步验证了它们的相关性及其表达谱。
我们的分析结果揭示了五个与 OP 密切相关的 PyMGs-IGKC、TMEM187、RPS11、IGLL3P 和 GOLGA8N。深入研究它们的生物学功能突出了它们在雌激素反应调节、细胞质钙离子浓度调节和 GABA 能突触传递中的作用。值得注意的是,这些 PyMGs 是 OP 的有效诊断生物标志物,具有相当高的准确性来区分受影响的个体。
这项研究揭示了五个与 OP 密切相关的 PyMGs,为生物标志物的发现开辟了新途径,并提供了对其病理生理学基础的深入了解。这些发现不仅加深了我们对 OP 复杂性的理解,也预示着更精确的诊断和治疗模式的出现。