Suppr超能文献

基于生物信息学分析和机器学习的与骨质疏松症和慢性乙型肝炎感染相关的基因联合筛查。

Screening of genes co-associated with osteoporosis and chronic HBV infection based on bioinformatics analysis and machine learning.

机构信息

Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.

Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China.

出版信息

Front Immunol. 2024 Sep 16;15:1472354. doi: 10.3389/fimmu.2024.1472354. eCollection 2024.

Abstract

OBJECTIVE

To identify HBV-related genes (HRGs) implicated in osteoporosis (OP) pathogenesis and develop a diagnostic model for early OP detection in chronic HBV infection (CBI) patients.

METHODS

Five public sequencing datasets were collected from the GEO database. Gene differential expression and LASSO analyses identified genes linked to OP and CBI. Machine learning algorithms (random forests, support vector machines, and gradient boosting machines) further filtered these genes. The best diagnostic model was chosen based on accuracy and Kappa values. A nomogram model based on HRGs was constructed and assessed for reliability. OP patients were divided into two chronic HBV-related clusters using non-negative matrix factorization. Differential gene expression analysis, Gene Ontology, and KEGG enrichment analyses explored the roles of these genes in OP progression, using ssGSEA and GSVA. Differences in immune cell infiltration between clusters and the correlation between HRGs and immune cells were examined using ssGSEA and the Pearson method.

RESULTS

Differential gene expression analysis of CBI and combined OP dataset identified 822 and 776 differentially expressed genes, respectively, with 43 genes intersecting. Following LASSO analysis and various machine learning recursive feature elimination algorithms, 16 HRGs were identified. The support vector machine emerged as the best predictive model based on accuracy and Kappa values, with AUC values of 0.92, 0.83, 0.74, and 0.7 for the training set, validation set, GSE7429, and GSE7158, respectively. The nomogram model exhibited AUC values of 0.91, 0.79, and 0.68 in the training set, GSE7429, and GSE7158, respectively. Non-negative matrix factorization divided OP patients into two clusters, revealing statistically significant differences in 11 types of immune cell infiltration between clusters. Finally, intersecting the HRGs obtained from LASSO analysis with the HRGs identified three genes.

CONCLUSION

This study successfully identified HRGs and developed an efficient diagnostic model based on HRGs, demonstrating high accuracy and strong predictive performance across multiple datasets. This research not only offers new insights into the complex relationship between OP and CBI but also establishes a foundation for the development of early diagnostic and personalized treatment strategies for chronic HBV-related OP.

摘要

目的

鉴定与乙型肝炎病毒(HBV)相关的基因(HRGs)在骨质疏松症(OP)发病机制中的作用,并开发一种用于慢性乙型肝炎病毒感染(CBI)患者早期 OP 检测的诊断模型。

方法

从 GEO 数据库中收集了五个公共测序数据集。基因差异表达和 LASSO 分析鉴定了与 OP 和 CBI 相关的基因。机器学习算法(随机森林、支持向量机和梯度提升机)进一步筛选这些基因。基于准确性和 Kappa 值选择最佳诊断模型。基于 HRGs 构建并评估了列线图模型的可靠性。使用非负矩阵分解将 OP 患者分为两个慢性乙型肝炎病毒相关的聚类。使用 ssGSEA 和 GSVA 对差异基因表达分析、基因本体论和 KEGG 富集分析进行了研究,以探索这些基因在 OP 进展中的作用。使用 ssGSEA 和 Pearson 方法检查了聚类之间免疫细胞浸润的差异以及 HRGs 与免疫细胞之间的相关性。

结果

对 CBI 和合并的 OP 数据集进行差异基因表达分析,分别鉴定了 822 个和 776 个差异表达基因,其中 43 个基因存在交集。经过 LASSO 分析和各种机器学习递归特征消除算法,确定了 16 个 HRGs。基于准确性和 Kappa 值,支持向量机是最佳预测模型,其在训练集、验证集、GSE7429 和 GSE7158 中的 AUC 值分别为 0.92、0.83、0.74 和 0.7。列线图模型在训练集、GSE7429 和 GSE7158 中的 AUC 值分别为 0.91、0.79 和 0.68。非负矩阵分解将 OP 患者分为两个聚类,发现聚类之间 11 种免疫细胞浸润存在统计学显著差异。最后,将 LASSO 分析得到的 HRGs 与鉴定出的 HRGs 进行交集,得到三个基因。

结论

本研究成功鉴定了 HRGs,并基于 HRGs 开发了一种高效的诊断模型,在多个数据集上具有较高的准确性和强大的预测性能。本研究不仅为 OP 和 CBI 之间的复杂关系提供了新的见解,还为慢性乙型肝炎病毒相关 OP 的早期诊断和个性化治疗策略的发展奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9178/11439653/7cef5ec6d7bf/fimmu-15-1472354-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验