Orthopedics department The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510000, China.
Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China.
Respir Res. 2024 Aug 31;25(1):327. doi: 10.1186/s12931-024-02954-4.
Asthma, a prevalent chronic inflammatory disorder, is shaped by a multifaceted interplay between genetic susceptibilities and environmental exposures. Despite strides in deciphering its pathophysiological landscape, the intricate molecular underpinnings of asthma remain elusive. The focus has increasingly shifted toward the metabolic aberrations accompanying asthma, particularly within the domain of pyrimidine metabolism (PyM)-a critical pathway in nucleotide synthesis and degradation. While the therapeutic relevance of PyM has been recognized across various diseases, its specific contributions to asthma pathology are yet underexplored. This study employs sophisticated bioinformatics approaches to delineate and confirm the involvement of PyM genes (PyMGs) in asthma, aiming to bridge this significant gap in knowledge.
Employing cutting-edge bioinformatics techniques, this research aimed to elucidate the role of PyMGs in asthma. We conducted a detailed examination of 31 PyMGs to assess their differential expression. Through Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA), we explored the biological functions and pathways linked to these genes. We utilized Lasso regression and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) to pinpoint critical hub genes and to ascertain the diagnostic accuracy of eight PyMGs in distinguishing asthma, complemented by an extensive correlation study with the clinical features of the disease. Validation of the gene expressions was performed using datasets GSE76262 and GSE147878.
Our analyses revealed that eleven PyMGs-DHODH, UMPS, NME7, NME1, POLR2B, POLR3B, POLR1C, POLE, ENPP3, RRM2B, TK2-are significantly associated with asthma. These genes play crucial roles in essential biological processes such as RNA splicing, anatomical structure maintenance, and metabolic processes involving purine compounds.
This investigation identifies eleven PyMGs at the core of asthma's pathogenesis, establishing them as potential biomarkers for this disease. Our findings enhance the understanding of asthma's molecular mechanisms and open new avenues for improving diagnostics, monitoring, and progression evaluation. By providing new insights into non-cancerous pathologies, our work introduces a novel perspective and sets the stage for further studies in this field.
哮喘是一种常见的慢性炎症性疾病,其发病机制受遗传易感性和环境暴露等多种因素的相互作用影响。尽管我们在解析其病理生理学方面已经取得了一定的进展,但哮喘的复杂分子基础仍然难以捉摸。目前的研究重点已经逐渐转向哮喘伴随的代谢异常,特别是嘧啶代谢(PyM)领域——核苷酸合成和降解的关键途径。虽然 PyM 在各种疾病中的治疗相关性已经得到了认可,但它在哮喘病理中的具体作用仍未得到充分探索。本研究采用先进的生物信息学方法来描绘和确认 PyM 基因(PyMGs)在哮喘中的作用,旨在填补这一重要知识空白。
本研究采用先进的生物信息学技术,旨在阐明 PyMGs 在哮喘中的作用。我们对 31 个 PyMGs 进行了详细的差异表达分析。通过基因集富集分析(GSEA)和基因集变异分析(GSVA),我们探讨了与这些基因相关的生物学功能和途径。我们利用 Lasso 回归和支持向量机递归特征消除(SVM-RFE)来确定关键的枢纽基因,并通过与疾病临床特征的广泛相关性研究来评估八个 PyMGs 在区分哮喘方面的诊断准确性。同时,我们还使用了数据集 GSE76262 和 GSE147878 来验证基因表达。
我们的分析结果表明,有 11 个 PyMGs-DHODH、UMPS、NME7、NME1、POLR2B、POLR3B、POLR1C、POLE、ENPP3、RRM2B 和 TK2-与哮喘显著相关。这些基因在 RNA 剪接、解剖结构维持以及涉及嘌呤化合物的代谢过程等重要生物学过程中发挥着关键作用。
本研究确定了 11 个 PyMGs 是哮喘发病机制的核心,它们可能成为哮喘的潜在生物标志物。我们的研究结果增强了对哮喘分子机制的理解,并为改善诊断、监测和疾病进展评估开辟了新的途径。通过为非癌症病理提供新的见解,我们的工作引入了一个新的视角,并为该领域的进一步研究奠定了基础。