Suppr超能文献

用于编辑哺乳动物线粒体基因组的工具。

Tools for editing the mammalian mitochondrial genome.

机构信息

Miller School of Medicine, University of Miami, 1600 NW 10th Ave, room 7044, Miami, FL 33136, United States.

出版信息

Hum Mol Genet. 2024 May 22;33(R1):R92-R99. doi: 10.1093/hmg/ddae037.

Abstract

The manipulation of animal mitochondrial genomes has long been a challenge due to the lack of an effective transformation method. With the discovery of specific gene editing enzymes, designed to target pathogenic mitochondrial DNA mutations (often heteroplasmic), the selective removal or modification of mutant variants has become a reality. Because mitochondria cannot efficiently import RNAs, CRISPR has not been the first choice for editing mitochondrial genes. However, the last few years witnessed an explosion in novel and optimized non-CRISPR approaches to promote double-strand breaks or base-edit of mtDNA in vivo. Engineered forms of specific nucleases and cytidine/adenine deaminases form the basis for these techniques. I will review the newest developments that constitute the current toolbox for animal mtDNA gene editing in vivo, bringing these approaches not only to the exploration of mitochondrial function, but also closer to clinical use.

摘要

由于缺乏有效的转化方法,动物线粒体基因组的操作一直是一个挑战。随着特异性基因编辑酶的发现,这些酶旨在靶向致病性线粒体 DNA 突变(通常是异质体),突变变体的选择性去除或修饰成为现实。由于线粒体不能有效地导入 RNA,CRISPR 并不是编辑线粒体基因的首选方法。然而,在过去的几年里,出现了许多新的和优化的非 CRISPR 方法来促进体内线粒体 DNA 的双链断裂或碱基编辑。特异性核酸酶和胞嘧啶/腺嘌呤脱氨酶的工程形式构成了这些技术的基础。我将回顾构成目前体内动物 mtDNA 基因编辑工具包的最新进展,这些方法不仅使我们能够探索线粒体功能,而且更接近临床应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验