Voltarelli Leonardo G J M, Pessa Arthur A B, Zunino Luciano, Zola Rafael S, Lenzi Ervin K, Perc Matjaž, Ribeiro Haroldo V
Departamento de Física, Universidade Estadual de Maringá, Maringá PR 87020-900, Brazil.
Centro de Investigaciones Ópticas (CONICET La Plata - CIC - UNLP), 1897 Gonnet, La Plata, Argentina.
Chaos. 2024 May 1;34(5). doi: 10.1063/5.0209206.
Permutation entropy and its associated frameworks are remarkable examples of physics-inspired techniques adept at processing complex and extensive datasets. Despite substantial progress in developing and applying these tools, their use has been predominantly limited to structured datasets such as time series or images. Here, we introduce the k-nearest neighbor permutation entropy, an innovative extension of the permutation entropy tailored for unstructured data, irrespective of their spatial or temporal configuration and dimensionality. Our approach builds upon nearest neighbor graphs to establish neighborhood relations and uses random walks to extract ordinal patterns and their distribution, thereby defining the k-nearest neighbor permutation entropy. This tool not only adeptly identifies variations in patterns of unstructured data but also does so with a precision that significantly surpasses conventional measures such as spatial autocorrelation. Additionally, it provides a natural approach for incorporating amplitude information and time gaps when analyzing time series or images, thus significantly enhancing its noise resilience and predictive capabilities compared to the usual permutation entropy. Our research substantially expands the applicability of ordinal methods to more general data types, opening promising research avenues for extending the permutation entropy toolkit for unstructured data.
排列熵及其相关框架是受物理启发的技术的杰出范例,擅长处理复杂且大量的数据集。尽管在开发和应用这些工具方面取得了重大进展,但它们的使用主要限于结构化数据集,如时间序列或图像。在此,我们引入k近邻排列熵,这是一种针对非结构化数据量身定制的排列熵的创新扩展,无论其空间或时间配置及维度如何。我们的方法基于最近邻图来建立邻域关系,并使用随机游走提取顺序模式及其分布,从而定义k近邻排列熵。该工具不仅能巧妙地识别非结构化数据模式中的变化,而且其精度显著超过诸如空间自相关等传统度量。此外,在分析时间序列或图像时,它提供了一种纳入幅度信息和时间间隔的自然方法,因此与通常的排列熵相比,其抗噪声能力和预测能力得到显著增强。我们的研究极大地扩展了顺序方法对更一般数据类型的适用性,为扩展非结构化数据的排列熵工具包开辟了有前景的研究途径。