Suppr超能文献

创建和验证细粒度问题主观性数据集 (FQSD):用于增强自动主观性问答系统的新基准。

Creating and validating the Fine-Grained Question Subjectivity Dataset (FQSD): A new benchmark for enhanced automatic subjective question answering systems.

机构信息

Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran.

出版信息

PLoS One. 2024 May 23;19(5):e0301696. doi: 10.1371/journal.pone.0301696. eCollection 2024.

Abstract

In the domain of question subjectivity classification, there exists a need for detailed datasets that can foster advancements in Automatic Subjective Question Answering (ASQA) systems. Addressing the prevailing research gaps, this paper introduces the Fine-Grained Question Subjectivity Dataset (FQSD), which comprises 10,000 questions. The dataset distinguishes between subjective and objective questions and offers additional categorizations such as Subjective-types (Target, Attitude, Reason, Yes/No, None) and Comparison-form (Single, Comparative). Annotation reliability was confirmed via robust evaluation techniques, yielding a Fleiss's Kappa score of 0.76 and Pearson correlation values up to 0.80 among three annotators. We benchmarked FQSD against existing datasets such as (Yu, Zha, and Chua 2012), SubjQA (Bjerva 2020), and ConvEx-DS (Hernandez-Bocanegra 2021). Our dataset excelled in scale, linguistic diversity, and syntactic complexity, establishing a new standard for future research. We employed visual methodologies to provide a nuanced understanding of the dataset and its classes. Utilizing transformer-based models like BERT, XLNET, and RoBERTa for validation, RoBERTa achieved an outstanding F1-score of 97%, confirming the dataset's efficacy for the advanced subjectivity classification task. Furthermore, we utilized Local Interpretable Model-agnostic Explanations (LIME) to elucidate model decision-making, ensuring transparent and reliable model predictions in subjectivity classification tasks.

摘要

在问题主观性分类领域,需要详细的数据集来推动自动主观性问答(ASQA)系统的发展。本文针对当前的研究空白,引入了细粒度问题主观性数据集(FQSD),其中包含 10000 个问题。该数据集区分主观性问题和客观性问题,并提供了其他分类,如主观性类型(目标、态度、原因、是/否、无)和比较形式(单一、比较)。通过稳健的评估技术,确认了注释的可靠性,三位注释者的 Fleiss'kappa 评分达到 0.76,Pearson 相关系数高达 0.80。我们将 FQSD 与现有的数据集(如(Yu、Zha 和 Chua 2012)、SubjQA(Bjerva 2020)和 ConvEx-DS(Hernandez-Bocanegra 2021)进行了对比。我们的数据集在规模、语言多样性和句法复杂性方面表现出色,为未来的研究确立了新的标准。我们采用可视化方法来深入了解数据集及其类别。使用基于转换器的模型,如 BERT、XLNET 和 RoBERTa 进行验证,RoBERTa 取得了卓越的 F1 分数 97%,证实了该数据集在高级主观性分类任务中的有效性。此外,我们利用局部可解释模型不可知解释(LIME)来阐明模型决策,确保在主观性分类任务中实现透明和可靠的模型预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4b/11115256/6c26bf178fe8/pone.0301696.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验