Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville 3052, Victoria Australia.
Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne 3004, Victoria, Australia.
J Chem Inf Model. 2021 Nov 22;61(11):5438-5445. doi: 10.1021/acs.jcim.1c01135. Epub 2021 Nov 1.
Protein-protein interactions are promising sites for development of selective drugs; however, they have generally been viewed as challenging targets. Molecules targeting protein-protein interactions tend to be larger and more lipophilic than other drug-like molecules, mimicking the properties of interacting interfaces. Here, we propose a machine learning approach that uses a graph-based representation of small molecules to guide identification of inhibitors modulating protein-protein interactions, pdCSM-PPI. This approach was applied to 21 different PPI targets. We developed interaction-specific models that were able to accurately identify active compounds achieving MCC and F1 scores up to 1, and Pearson's correlations up to 0.87, outperforming previous approaches. Using insights from these individual models, we developed a generic protein-protein interaction modulator predictive model, which accurately predicted IC50 with a Pearson's correlation of 0.64 on a low redundancy blind test. Importantly, we were able to accurately identify active from inactive compounds, achieving an AUC of 0.77 and sensitivity and specificity of 76% and 78%, respectively. We believe pdCSM-PPI will be an important tool to help guide more efficient screening of new PPI inhibitors; it is freely available as an easy-to-use web server and API at http://biosig.unimelb.edu.au/pdcsm_ppi.
蛋白质-蛋白质相互作用是开发选择性药物的有前途的靶点;然而,它们通常被视为具有挑战性的靶标。靶向蛋白质-蛋白质相互作用的分子往往比其他类药性分子更大、更亲脂性,模拟相互作用界面的特性。在这里,我们提出了一种基于小分子图表示的机器学习方法,用于指导鉴定调节蛋白质-蛋白质相互作用的抑制剂,即 pdCSM-PPI。该方法应用于 21 个不同的 PPI 靶点。我们开发了特定于相互作用的模型,能够准确识别活性化合物,达到 MCC 和 F1 分数高达 1,Pearson 相关系数高达 0.87,优于以前的方法。利用这些单个模型的见解,我们开发了一种通用的蛋白质-蛋白质相互作用调节剂预测模型,该模型在低冗余盲测中对 IC50 进行准确预测,Pearson 相关系数为 0.64。重要的是,我们能够准确地区分活性和非活性化合物,AUC 达到 0.77,灵敏度和特异性分别为 76%和 78%。我们相信 pdCSM-PPI 将成为帮助指导更高效筛选新的 PPI 抑制剂的重要工具;它可以免费在易于使用的网络服务器和 API 上使用,网址为 http://biosig.unimelb.edu.au/pdcsm_ppi。