Contreras Miguel, Silva Brandon, Shickel Benjamin, Davidson Andrea, Ozrazgat-Baslanti Tezcan, Ren Yuanfang, Guan Ziyuan, Balch Jeremy, Zhang Jiaqing, Bandyopadhyay Sabyasachi, Loftus Tyler, Khezeli Kia, Nerella Subhash, Bihorac Azra, Rashidi Parisa
Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
Intelligent Clinical Care Center (IC3), University of Florida, Gainesville, FL, USA.
Res Sq. 2024 Aug 6:rs.3.rs-4790824. doi: 10.21203/rs.3.rs-4790824/v1.
On average, more than 5 million patients are admitted to intensive care units (ICUs) in the US, with mortality rates ranging from 10 to 29%. The acuity state of patients in the ICU can quickly change from stable to unstable, sometimes leading to life-threatening conditions. Early detection of deteriorating conditions can assist in more timely interventions and improved survival rates. While Artificial Intelligence (AI)-based models show potential for assessing acuity in a more granular and automated manner, they typically use mortality as a proxy of acuity in the ICU. Furthermore, these methods do not determine the acuity state of a patient (, stable or unstable), the transition between acuity states, or the need for life-sustaining therapies. In this study, we propose APRICOT-M (Acuity Prediction in Intensive Care Unit-Mamba), a 1M-parameter state space-based neural network to predict acuity state, transitions, and the need for life-sustaining therapies in real-time among ICU patients. The model integrates ICU data in the preceding four hours (including vital signs, laboratory results, assessment scores, and medications) and patient characteristics (age, sex, race, and comorbidities) to predict the acuity outcomes in the next four hours. Our state space-based model can process sparse and irregularly sampled data without manual imputation, thus reducing the noise in input data and increasing inference speed. The model was trained on data from 107,473 patients (142,062 ICU admissions) from 55 hospitals between 2014-2017 and validated externally on data from 74,901 patients (101,356 ICU admissions) from 143 hospitals. Additionally, it was validated temporally on data from 12,927 patients (15,940 ICU admissions) from one hospital in 2018-2019 and prospectively on data from 215 patients (369 ICU admissions) from one hospital in 2021-2023. Three datasets were used for training and evaluation: the University of Florida Health (UFH) dataset, the electronic ICU Collaborative Research Database (eICU), and the Medical Information Mart for Intensive Care (MIMIC)-IV dataset. APRICOT-M significantly outperforms the baseline acuity assessment, Sequential Organ Failure Assessment (SOFA), for mortality prediction in both external (AUROC 0.95 CI: 0.94-0.95 compared to 0.78 CI: 0.78-0.79) and prospective (AUROC 0.99 CI: 0.97-1.00 compared to 0.80 CI: 0.65-0.92) cohorts, as well as for instability prediction (external AUROC 0.75 CI: 0.74-0.75 compared to 0.51 CI: 0.51-0.51, and prospective AUROC 0.69 CI: 0.64-0.74 compared to 0.53 CI: 0.50-0.57). This tool has the potential to help clinicians make timely interventions by predicting the transition between acuity states and decision-making on life-sustaining within the next four hours in the ICU.
在美国,平均每年有超过500万患者被收治到重症监护病房(ICU),死亡率在10%至29%之间。ICU患者的病情严重程度可能会迅速从稳定转变为不稳定,有时甚至会发展到危及生命的状况。早期发现病情恶化有助于更及时地进行干预并提高生存率。虽然基于人工智能(AI)的模型显示出以更精细和自动化的方式评估病情严重程度的潜力,但它们通常将死亡率作为ICU病情严重程度的替代指标。此外,这些方法无法确定患者的病情严重程度状态(稳定或不稳定)、病情严重程度状态之间的转变,或维持生命治疗的需求。在本研究中,我们提出了APRICOT-M(重症监护病房-曼巴病情严重程度预测模型),这是一种基于100万个参数的状态空间神经网络,用于实时预测ICU患者的病情严重程度状态、转变以及维持生命治疗的需求。该模型整合了前四个小时的ICU数据(包括生命体征、实验室检查结果、评估分数和用药情况)以及患者特征(年龄、性别、种族和合并症),以预测接下来四个小时的病情严重程度结果。我们基于状态空间的模型可以处理稀疏且采样不规则的数据,无需人工插补,从而减少输入数据中的噪声并提高推理速度。该模型在2014年至2017年期间来自55家医院的107473名患者(142062次ICU入院)的数据上进行训练,并在来自143家医院的74901名患者(101356次ICU入院)的数据上进行外部验证。此外,它还在2018年至2019年期间来自一家医院的12927名患者(15940次ICU入院)的数据上进行了时间验证,并在2021年至2023年期间来自一家医院的215名患者(369次ICU入院)的数据上进行了前瞻性验证。使用了三个数据集进行训练和评估:佛罗里达大学健康(UFH)数据集、电子ICU协作研究数据库(eICU)和重症监护医学信息集市(MIMIC)-IV数据集。在外部(AUROC 0.95 CI:0.94 - 0.95,而基线病情严重程度评估序贯器官衰竭评估(SOFA)为0.78 CI:0.78 - 0.79)和前瞻性(AUROC 0.99 CI:0.97 - 1.00,而SOFA为0.80 CI:0.65 - 0.92)队列中,APRICOT-M在死亡率预测方面显著优于基线病情严重程度评估SOFA,在不稳定预测方面也是如此(外部AUROC 0.75 CI:0.74 - 0.75,而SOFA为0.51 CI:0.51 - 0.51;前瞻性AUROC 0.69 CI:0.64 - 0.74,而SOFA为0.53 CI:0.50 - 0.57)。该工具有可能通过预测病情严重程度状态之间的转变以及在接下来的四个小时内在ICU中关于维持生命治疗的决策,帮助临床医生及时进行干预。