Suppr超能文献

一种基于熵的新型多级阈值热图像分割方法。

A Novel Entropy-Based Approach for Thermal Image Segmentation Using Multilevel Thresholding.

作者信息

Trongtirakul Thaweesak, Panetta Karen, Grigoryan Artyom M, Agaian Sos S

机构信息

Department of Electrical Engineering, Faculty of Industrial Education, Rajamangala University of Technology Phra Nakhon, Bangkok 10300, Thailand.

School of Engineering, Tufts University, Medford, MA 02155, USA.

出版信息

Entropy (Basel). 2025 May 14;27(5):526. doi: 10.3390/e27050526.

Abstract

Image segmentation is a fundamental challenge in computer vision, transforming complex image representations into meaningful, analyzable components. While entropy-based multilevel thresholding techniques, including Otsu, Shannon, fuzzy, Tsallis, Renyi, and Kapur approaches, have shown potential in image segmentation, they encounter significant limitations when processing thermal images, such as poor spatial resolution, low contrast, lack of color and texture information, and susceptibility to noise and background clutter. This paper introduces a novel adaptive unsupervised entropy algorithm (A-Entropy) to enhance multilevel thresholding for thermal image segmentation. Our key contributions include (i) an image-dependent thermal enhancement technique specifically designed for thermal images to improve visibility and contrast in regions of interest, (ii) a so-called A-Entropy concept for unsupervised thermal image thresholding, and (iii) a comprehensive evaluation using the Benchmarking IR Dataset for Surveillance with Aerial Intelligence (BIRDSAI). Experimental results demonstrate the superiority of our proposal compared to other state-of-the-art methods on the BIRDSAI dataset, which comprises both real and synthetic thermal images with substantial variations in scale, contrast, background clutter, and noise. Comparative analysis indicates improved segmentation accuracy and robustness compared to traditional entropy-based methods. The framework's versatility suggests promising applications in brain tumor detection, optical character recognition, thermal energy leakage detection, and face recognition.

摘要

图像分割是计算机视觉中的一项基本挑战,它将复杂的图像表示转化为有意义的、可分析的组件。虽然基于熵的多级阈值技术,包括大津法、香农法、模糊法、Tsallis法、雷尼法和卡普尔法,在图像分割中已显示出潜力,但在处理热图像时,它们存在显著局限性,如空间分辨率低、对比度差、缺乏颜色和纹理信息,以及易受噪声和背景杂波影响。本文介绍了一种新颖的自适应无监督熵算法(A-Entropy),以增强热图像分割的多级阈值处理。我们的主要贡献包括:(i)一种专门为热图像设计的基于图像的热增强技术,以提高感兴趣区域的可见性和对比度;(ii)一种用于无监督热图像阈值处理的所谓A-Entropy概念;(iii)使用用于空中情报监视的基准红外数据集(BIRDSAI)进行全面评估。实验结果表明,在包含真实和合成热图像的BIRDSAI数据集上,我们的方法优于其他现有方法,这些热图像在尺度、对比度、背景杂波和噪声方面存在很大差异。对比分析表明,与传统的基于熵的方法相比,分割精度和鲁棒性有所提高。该框架的通用性表明其在脑肿瘤检测、光学字符识别、热能泄漏检测和人脸识别等方面具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验