文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用酿酒酵母工程提高代谢稳健性并从木质纤维素生物质生产 L-乳酸。

Engineering of Saccharomyces cerevisiae for enhanced metabolic robustness and L-lactic acid production from lignocellulosic biomass.

机构信息

Department of Life Sciences, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden.

Department of Life Sciences, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.

出版信息

Metab Eng. 2024 Jul;84:23-33. doi: 10.1016/j.ymben.2024.05.003. Epub 2024 May 23.


DOI:10.1016/j.ymben.2024.05.003
PMID:38788894
Abstract

Metabolic engineering for high productivity and increased robustness is needed to enable sustainable biomanufacturing of lactic acid from lignocellulosic biomass. Lactic acid is an important commodity chemical used for instance as a monomer for production of polylactic acid, a biodegradable polymer. Here, rational and model-based optimization was used to engineer a diploid, xylose fermenting Saccharomyces cerevisiae strain to produce L-lactic acid. The metabolic flux was steered towards lactic acid through the introduction of multiple lactate dehydrogenase encoding genes while deleting ERF2, GPD1, and CYB2. A production of 93 g/L of lactic acid with a yield of 0.84 g/g was achieved using xylose as the carbon source. To increase xylose utilization and reduce acetic acid synthesis, PHO13 and ALD6 were also deleted from the strain. Finally, CDC19 encoding a pyruvate kinase was overexpressed, resulting in a yield of 0.75 g lactic acid/g sugars consumed, when the substrate used was a synthetic lignocellulosic hydrolysate medium, containing hexoses, pentoses and inhibitors such as acetate and furfural. Notably, modeling also provided leads for understanding the influence of oxygen in lactic acid production. High lactic acid production from xylose, at oxygen-limitation could be explained by a reduced flux through the oxidative phosphorylation pathway. On the contrast, higher oxygen levels were beneficial for lactic acid production with the synthetic hydrolysate medium, likely as higher ATP concentrations are needed for tolerating the inhibitors therein. The work highlights the potential of S. cerevisiae for industrial production of lactic acid from lignocellulosic biomass.

摘要

需要通过代谢工程来提高生产力和增强鲁棒性,从而实现可持续的木质纤维素生物质生产乳酸。乳酸是一种重要的商品化学品,例如可用作生产可生物降解聚合物聚乳酸的单体。在这里,通过引入多个乳酸脱氢酶编码基因,同时删除 ERF2、GPD1 和 CYB2,基于理性和基于模型的优化被用于工程化二倍体、木糖发酵酿酒酵母菌株来生产 L-乳酸。通过将代谢通量转向乳酸,实现了以木糖为碳源生产 93g/L 的乳酸,产率为 0.84g/g。为了提高木糖利用率并减少乙酸合成,还从该菌株中删除了 PHO13 和 ALD6。最后,过表达编码丙酮酸激酶的 CDC19,当使用的底物是含有己糖、戊糖和抑制剂(如乙酸和糠醛)的合成木质纤维素水解物培养基时,导致消耗的糖每克产生 0.75g 乳酸,最终达到 0.75g 乳酸/g 消耗糖的产率。值得注意的是,建模还为理解氧气对乳酸生产的影响提供了线索。在氧气限制下,木糖生产高乳酸可以通过减少氧化磷酸化途径的通量来解释。相比之下,更高的氧气水平有利于使用合成水解物培养基生产乳酸,这可能是因为需要更高的 ATP 浓度来耐受其中的抑制剂。这项工作突出了酿酒酵母从木质纤维素生物质生产乳酸的工业生产潜力。

相似文献

[1]
Engineering of Saccharomyces cerevisiae for enhanced metabolic robustness and L-lactic acid production from lignocellulosic biomass.

Metab Eng. 2024-7

[2]
Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae.

Biotechnol Bioeng. 2016-5

[3]
Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.

Biotechnol Bioeng. 2017-1

[4]
Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.

Appl Microbiol Biotechnol. 2015-10

[5]
L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities.

Microb Cell Fact. 2018-4-11

[6]
Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.

J Biosci Bioeng. 2013-8-3

[7]
Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid.

Biotechnol Bioeng. 2015-4

[8]
Deletion of JEN1 and ADY2 reduces lactic acid yield from an engineered Saccharomyces cerevisiae, in xylose medium, expressing a heterologous lactate dehydrogenase.

FEMS Yeast Res. 2019-9-1

[9]
Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates.

J Ind Microbiol Biotechnol. 2017-11

[10]
Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.

ACS Synth Biol. 2015-6-19

引用本文的文献

[1]
Analysis of antioxidant capacity and wine quality characteristics of fermented colored highland barley based on metabolomics.

Food Chem X. 2025-8-25

[2]
Sustainable lactic acid production from agricultural waste: a review of current techniques, challenges and future directions.

Bioresour Bioprocess. 2025-7-29

[3]
Recent advances in genetic engineering and chemical production in yeast species.

FEMS Yeast Res. 2025-1-30

[4]
Native and Recombinant Yeast Producers of Lactic Acid: Characteristics and Perspectives.

Int J Mol Sci. 2025-2-25

[5]
ChIP-exo and CRISPRi/a illuminate the role of Pdr1 and Yap1 in acetic acid tolerance in .

Appl Environ Microbiol. 2025-4-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索