Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland.
Molecules. 2024 May 14;29(10):2296. doi: 10.3390/molecules29102296.
Deep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental solubility data were collected for all DES systems. A machine learning model was developed using COSMO-RS molecular descriptors to predict solubility. All studied DESs exhibited a cosolvency effect, increasing drug solubility at modest concentrations of water. The model accurately predicted solubility for ibuprofen, ketoprofen, and related analogs (flurbiprofen, felbinac, phenylacetic acid, diphenylacetic acid). A machine learning approach utilizing COSMO-RS descriptors enables the rational design and solubility prediction of DES formulations for improved pharmaceutical applications.
深共熔溶剂(DESs)在药物应用中常被用作活性物质的优良增溶剂。本研究利用含有氯化胆碱或甜菜碱作为氢键受体和各种多元醇(乙二醇、二乙二醇、三乙二醇、甘油、1,2-丙二醇、1,3-丁二醇)作为氢键供体的 DESs 来调节布洛芬和酮洛芬的溶解度。对所有 DES 体系都收集了实验溶解度数据。使用 COSMO-RS 分子描述符开发了一个机器学习模型来预测溶解度。所有研究的 DES 都表现出共溶剂效应,在适度的水浓度下增加了药物的溶解度。该模型准确地预测了布洛芬、酮洛芬和相关类似物(氟比洛芬、非诺洛芬、苯乙酸、二苯乙酸)的溶解度。利用 COSMO-RS 描述符的机器学习方法可实现 DES 配方的合理设计和溶解度预测,从而改善药物应用。