Suppr超能文献

探索选定的活性药物成分在胆碱和甜菜碱基深共晶溶剂中的溶解度超空间:机器学习建模与实验验证。

Exploration of the Solubility Hyperspace of Selected Active Pharmaceutical Ingredients in Choline- and Betaine-Based Deep Eutectic Solvents: Machine Learning Modeling and Experimental Validation.

机构信息

Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland.

出版信息

Molecules. 2024 Oct 16;29(20):4894. doi: 10.3390/molecules29204894.

Abstract

Deep eutectic solvents (DESs) are popular green media used for various industrial, pharmaceutical, and biomedical applications. However, the possible compositions of eutectic systems are so numerous that it is impossible to study all of them experimentally. To remedy this limitation, the solubility landscape of selected active pharmaceutical ingredients (APIs) in choline chloride- and betaine-based deep eutectic solvents was explored using theoretical models based on machine learning. The available solubility data for the selected APIs, comprising a total of 8014 data points, were collected for the available neat solvents, binary solvent mixtures, and DESs. This set was augmented with new measurements for the popular sulfa drugs in dry DESs. The descriptors used in the machine learning protocol were obtained from the σ-profiles of the considered molecules computed within the COSMO-RS framework. A combination of six sets of descriptors and 36 regressors were tested. Taking into account both accuracy and generalization, it was concluded that the best regressor is nuSVR regressor-based predictive models trained using the relative intermolecular interactions and a twelve-step averaged simplification of the relative σ-profiles.

摘要

深共熔溶剂 (DESs) 是一种受欢迎的绿色介质,用于各种工业、制药和生物医学应用。然而,共晶体系的可能组成如此之多,以至于不可能通过实验来研究所有这些体系。为了弥补这一局限性,使用基于机器学习的理论模型探索了选定的活性药物成分 (API) 在氯化胆碱和甜菜碱基深共熔溶剂中的溶解度景观。对于选定的 API,共收集了 8014 个数据点的溶解度数据,这些数据点来自可用的纯溶剂、二元溶剂混合物和 DES。这组数据通过在干燥 DES 中对常用磺胺类药物进行新的测量得到了扩充。机器学习协议中使用的描述符是从所考虑分子的 σ-轮廓中获得的,这些轮廓是在 COSMO-RS 框架内计算的。测试了六组描述符和 36 个回归器的组合。考虑到准确性和泛化性,得出的结论是,最好的回归器是基于 nuSVR 回归器的预测模型,该模型使用相对分子间相互作用和相对 σ-轮廓的十二步平均简化进行训练。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e399/11510433/844a8bf2881f/molecules-29-04894-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验