Suppr超能文献

基于学习到的类别信息管理的图像生成模型持续学习技术分析

Analysis of Continual Learning Techniques for Image Generative Models with Learned Class Information Management.

作者信息

Togo Taro, Togo Ren, Maeda Keisuke, Ogawa Takahiro, Haseyama Miki

机构信息

Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan.

Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan.

出版信息

Sensors (Basel). 2024 May 13;24(10):3087. doi: 10.3390/s24103087.

Abstract

The advancements in deep learning have significantly enhanced the capability of image generation models to produce images aligned with human intentions. However, training and adapting these models to new data and tasks remain challenging because of their complexity and the risk of catastrophic forgetting. This study proposes a method for addressing these challenges involving the application of class-replacement techniques within a continual learning framework. This method utilizes selective amnesia (SA) to efficiently replace existing classes with new ones while retaining crucial information. This approach improves the model's adaptability to evolving data environments while preventing the loss of past information. We conducted a detailed evaluation of class-replacement techniques, examining their impact on the "class incremental learning" performance of models and exploring their applicability in various scenarios. The experimental results demonstrated that our proposed method could enhance the learning efficiency and long-term performance of image generation models. This study broadens the application scope of image generation technology and supports the continual improvement and adaptability of corresponding models.

摘要

深度学习的进步显著提高了图像生成模型生成符合人类意图图像的能力。然而,由于这些模型的复杂性以及灾难性遗忘的风险,对其进行训练并使其适应新数据和任务仍然具有挑战性。本研究提出了一种在持续学习框架内应用类别替换技术来应对这些挑战的方法。该方法利用选择性遗忘(SA)有效地用新类别替换现有类别,同时保留关键信息。这种方法提高了模型对不断变化的数据环境的适应性,同时防止过去信息的丢失。我们对类别替换技术进行了详细评估,考察了它们对模型“类别增量学习”性能的影响,并探索了它们在各种场景中的适用性。实验结果表明,我们提出的方法可以提高图像生成模型的学习效率和长期性能。本研究拓宽了图像生成技术的应用范围,并支持相应模型的持续改进和适应性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验