Seelinger David, Georges Hussam, Schäfer Jan-Lukas, Huong Jasmin, Tajima Rena, Mittelstedt Christan, Biesalski Markus
Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Technical University Darmstadt, Peter-Grünberg-Str. 8, 64287 Darmstadt, Germany.
Fachgebiet für Leichtbau und Strukturmechanik, Technical University Darmstadt, Otto-Berndt-Str. 2, 64287 Darmstadt, Germany.
Polymers (Basel). 2024 May 15;16(10):1402. doi: 10.3390/polym16101402.
Many plant materials in nature have the ability to change their shape to respond to external stimuli, such as humidity or moisture, to ensure their survival or safe seed release. A well-known example for this phenomenon is the pinecone, which is able to open its scales at low humidity due to the specific bilayer structures of the scale. Inspired by this, we developed a novel humidity-driven actuator based on paper. This was realized by the lamination of untreated paper made from eucalyptus fibers to a paper-carboxymethyl cellulose (CMC) composite. As observed, the hygroexpansion of the composite can be easily controlled by the amount of CMC in the impregnated paper sheet, which, thus, controls the morphologic deformation of the paper bilayer. For a more detailed understanding of these novel paper soft robots, we also studied the dynamic water vapor adsorption, polymer distribution and hygroexpansion of the paper-polymer composites. Finally, we applied a geometrically nonlinear finite element model to predict the bending behavior of paper bilayers and compared the results to experimental data. From this, we conclude that due to the complexity of structure of the paper composite, a universal prediction of the hygromorphic behavior is not a trivial matter.
自然界中的许多植物材料都有改变其形状以响应外部刺激(如湿度或水分)的能力,以确保其生存或安全释放种子。这种现象的一个著名例子是松果,由于其鳞片的特定双层结构,它能够在低湿度下张开鳞片。受此启发,我们开发了一种基于纸张的新型湿度驱动致动器。这是通过将由桉木纤维制成的未处理纸张与纸 - 羧甲基纤维素(CMC)复合材料层压实现的。如观察到的,复合材料的吸湿膨胀可以通过浸渍纸张中CMC的量轻松控制,从而控制纸双层的形态变形。为了更详细地了解这些新型纸软机器人,我们还研究了纸 - 聚合物复合材料的动态水蒸气吸附、聚合物分布和吸湿膨胀。最后,我们应用几何非线性有限元模型来预测纸双层的弯曲行为,并将结果与实验数据进行比较。由此,我们得出结论,由于纸复合材料结构的复杂性,对吸湿行为进行通用预测并非易事。