Suppr超能文献

植物运动作为仿生柔顺机构发展的概念生成器。

Plant Movements as Concept Generators for the Development of Biomimetic Compliant Mechanisms.

机构信息

Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany.

Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany.

出版信息

Integr Comp Biol. 2020 Oct 1;60(4):886-895. doi: 10.1093/icb/icaa028.

Abstract

Plant movements are of increasing interest for biomimetic approaches where hinge-free compliant mechanisms (flexible structures) for applications, for example, in architecture, soft robotics, and medicine are developed. In this article, we first concisely summarize the knowledge on plant movement principles and show how the different modes of actuation, that is, the driving forces of motion, can be used in biomimetic approaches for the development of motile technical systems. We then emphasize on current developments and breakthroughs in the field, that is, the technical implementation of plant movement principles through additive manufacturing, the development of structures capable of tracking movements (tropisms), and the development of structures that can perform multiple movement steps. Regarding the additive manufacturing section, we present original results on the successful transfer of several plant movement principles into 3D printed hygroscopic shape-changing structures ("4D printing"). The resulting systems include edge growth-driven actuation (as known from the petals of the lily flower), bending scale-like structures with functional bilayer setups (inspired from pinecones), modular aperture architectures (as can be similarly seen in moss peristomes), snap-through elastic instability actuation (as known from Venus flytrap snap-traps), and origami-like curved-folding kinematic amplification (inspired by the carnivorous waterwheel plant). Our novel biomimetic compliant mechanisms highlight the feasibility of modern printing techniques for designing and developing versatile tailored motion responses for technical applications. We then focus on persisting challenges in the field, that is, how to speed-boost intrinsically slow hydraulically actuated structures and how to achieve functional resilience and robustness, before we propose the establishment of a motion design catalog in the conclusion.

摘要

植物运动对于仿生学方法越来越有吸引力,因为在建筑、软机器人和医学等领域,正在开发无铰链的柔顺机构(柔性结构)。在本文中,我们首先简要总结了植物运动原理的知识,并展示了不同的运动方式(运动驱动力)如何在仿生学方法中用于开发运动技术系统。然后,我们强调了该领域的当前发展和突破,即通过增材制造实现植物运动原理的技术实施、能够跟踪运动(向性)的结构的发展以及能够执行多个运动步骤的结构的发展。关于增材制造部分,我们展示了将几种植物运动原理成功转化为 3D 打印吸湿形状变化结构(“4D 打印”)的原始结果。得到的系统包括边缘生长驱动的致动(如百合花瓣)、具有功能双层设置的弯曲片状结构(灵感来自松果)、模块化孔径结构(如苔藓缘毛)、弹塑性不稳定致动(如维纳斯捕蝇草的弹夹)和折纸状弯曲运动放大(受食虫水车轮植物启发)。我们新颖的仿生柔顺机构突出了现代打印技术设计和开发多功能定制运动响应的可行性,用于技术应用。然后,我们专注于该领域的持续挑战,即如何加速内在缓慢的液压致动结构,以及如何实现功能弹性和鲁棒性,然后在结论中提出建立运动设计目录的建议。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验