Tandon School of Engineering, New York University, New York, NY, USA.
Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
Sci Adv. 2024 Jul 19;10(29):eadk1256. doi: 10.1126/sciadv.adk1256.
The brain may have evolved a modular architecture for daily tasks, with circuits featuring functionally specialized modules that match the task structure. We hypothesize that this architecture enables better learning and generalization than architectures with less specialized modules. To test this, we trained reinforcement learning agents with various neural architectures on a naturalistic navigation task. We found that the modular agent, with an architecture that segregates computations of state representation, value, and action into specialized modules, achieved better learning and generalization. Its learned state representation combines prediction and observation, weighted by their relative uncertainty, akin to recursive Bayesian estimation. This agent's behavior also resembles macaques' behavior more closely. Our results shed light on the possible rationale for the brain's modularity and suggest that artificial systems can use this insight from neuroscience to improve learning and generalization in natural tasks.
大脑可能已经进化出一种用于日常任务的模块化架构,其电路具有功能专门化的模块,这些模块与任务结构相匹配。我们假设这种架构比具有较少专门化模块的架构更能实现更好的学习和泛化。为了验证这一点,我们在自然导航任务上使用各种神经架构训练强化学习代理。我们发现,模块化代理具有一种架构,它将状态表示、价值和动作的计算分离到专门的模块中,从而实现了更好的学习和泛化。它学习到的状态表示结合了预测和观察,权重由它们的相对不确定性决定,类似于递归贝叶斯估计。该代理的行为也更类似于猕猴的行为。我们的结果揭示了大脑模块化的可能原理,并表明人工系统可以利用神经科学的这一见解来改善自然任务中的学习和泛化。