Suppr超能文献

静息态 fMRI 数据对个体暴露为基础的认知行为疗法结果的预测效用缺乏证据:焦虑障碍中两个大型多中心样本的机器学习研究。

Lack of evidence for predictive utility from resting state fMRI data for individual exposure-based cognitive behavioral therapy outcomes: A machine learning study in two large multi-site samples in anxiety disorders.

机构信息

Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Psychology, HMU Health and Medical University Erfurt, Erfurt, Germany.

Institute for Translational Psychiatry, University of Münster, Germany.

出版信息

Neuroimage. 2024 Jul 15;295:120639. doi: 10.1016/j.neuroimage.2024.120639. Epub 2024 May 25.

Abstract

Data-based predictions of individual Cognitive Behavioral Therapy (CBT) treatment response are a fundamental step towards precision medicine. Past studies demonstrated only moderate prediction accuracy (i.e. ability to discriminate between responders and non-responders of a given treatment) when using clinical routine data such as demographic and questionnaire data, while neuroimaging data achieved superior prediction accuracy. However, these studies may be considerably biased due to very limited sample sizes and bias-prone methodology. Adequately powered and cross-validated samples are a prerequisite to evaluate predictive performance and to identify the most promising predictors. We therefore analyzed resting state functional magnet resonance imaging (rs-fMRI) data from two large clinical trials to test whether functional neuroimaging data continues to provide good prediction accuracy in much larger samples. Data came from two distinct German multicenter studies on exposure-based CBT for anxiety disorders, the Protect-AD and SpiderVR studies. We separately and independently preprocessed baseline rs-fMRI data from n = 220 patients (Protect-AD) and n = 190 patients (SpiderVR) and extracted a variety of features, including ROI-to-ROI and edge-functional connectivity, sliding-windows, and graph measures. Including these features in sophisticated machine learning pipelines, we found that predictions of individual outcomes never significantly differed from chance level, even when conducting a range of exploratory post-hoc analyses. Moreover, resting state data never provided prediction accuracy beyond the sociodemographic and clinical data. The analyses were independent of each other in terms of selecting methods to process resting state data for prediction input as well as in the used parameters of the machine learning pipelines, corroborating the external validity of the results. These similar findings in two independent studies, analyzed separately, urge caution regarding the interpretation of promising prediction results based on neuroimaging data from small samples and emphasizes that some of the prediction accuracies from previous studies may result from overestimation due to homogeneous data and weak cross-validation schemes. The promise of resting-state neuroimaging data to play an important role in the prediction of CBT treatment outcomes in patients with anxiety disorders remains yet to be delivered.

摘要

基于数据的个体认知行为疗法(CBT)治疗反应预测是精准医学的重要一步。过去的研究表明,使用临床常规数据(如人口统计学和问卷数据)时,预测准确性仅为中等(即区分给定治疗的反应者和非反应者的能力),而神经影像学数据则具有更高的预测准确性。然而,由于样本量非常有限且存在偏差倾向的方法,这些研究可能存在很大的偏差。充分的、经过交叉验证的样本是评估预测性能和识别最有前途的预测因子的前提。因此,我们分析了来自两个大型临床试验的静息状态功能磁共振成像(rs-fMRI)数据,以测试功能神经影像学数据是否在更大的样本中继续提供良好的预测准确性。数据来自两个不同的德国多中心研究,即暴露性 CBT 治疗焦虑障碍的 Protect-AD 和 SpiderVR 研究。我们分别独立地预处理了来自 n = 220 名患者(Protect-AD)和 n = 190 名患者(SpiderVR)的基线 rs-fMRI 数据,并提取了多种特征,包括 ROI-ROI 和边缘功能连接、滑动窗口和图测度。在复杂的机器学习管道中包含这些特征,我们发现,即使进行了一系列探索性事后分析,个体结果的预测也从未显著优于随机水平。此外,静息状态数据从未提供超出社会人口统计学和临床数据的预测准确性。就用于为预测输入处理静息状态数据的方法以及机器学习管道的使用参数而言,分析彼此独立,这证实了结果的外部有效性。这两个独立研究的类似发现分别分析,提醒人们在基于小样本神经影像学数据解释有前途的预测结果时要谨慎,并强调以前研究中的一些预测准确性可能是由于同质数据和弱交叉验证方案而导致的高估。静息态神经影像学数据在预测焦虑障碍患者 CBT 治疗结果方面发挥重要作用的前景仍有待实现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验