Polemi Nineta, Praça Isabel, Kioskli Kitty, Bécue Adrien
Cybersecurity Lab, University of Piraeus, Piraeus, Greece.
trustilio B.V., Amsterdam, Netherlands.
Front Big Data. 2024 May 9;7:1381163. doi: 10.3389/fdata.2024.1381163. eCollection 2024.
This paper addresses the critical gaps in existing AI risk management frameworks, emphasizing the neglect of human factors and the absence of metrics for socially related or human threats. Drawing from insights provided by NIST AI RFM and ENISA, the research underscores the need for understanding the limitations of human-AI interaction and the development of ethical and social measurements. The paper explores various dimensions of trustworthiness, covering legislation, AI cyber threat intelligence, and characteristics of AI adversaries. It delves into technical threats and vulnerabilities, including data access, poisoning, and backdoors, highlighting the importance of collaboration between cybersecurity engineers, AI experts, and social-psychology-behavior-ethics professionals. Furthermore, the socio-psychological threats associated with AI integration into society are examined, addressing issues such as bias, misinformation, and privacy erosion. The manuscript proposes a comprehensive approach to AI trustworthiness, combining technical and social mitigation measures, standards, and ongoing research initiatives. Additionally, it introduces innovative defense strategies, such as cyber-social exercises, digital clones, and conversational agents, to enhance understanding of adversary profiles and fortify AI security. The paper concludes with a call for interdisciplinary collaboration, awareness campaigns, and continuous research efforts to create a robust and resilient AI ecosystem aligned with ethical standards and societal expectations.
本文探讨了现有人工智能风险管理框架中的关键差距,强调了对人为因素的忽视以及缺乏针对社会相关或人为威胁的指标。借鉴美国国家标准与技术研究院(NIST)人工智能风险管理框架(AI RFM)和欧洲网络与信息安全局(ENISA)提供的见解,该研究强调了理解人机交互局限性以及制定伦理和社会衡量标准的必要性。本文探讨了可信度的各个维度,涵盖立法、人工智能网络威胁情报以及人工智能对手的特征。它深入研究了技术威胁和漏洞,包括数据访问、数据投毒和后门,强调了网络安全工程师、人工智能专家以及社会心理学-行为-伦理专业人员之间合作的重要性。此外,还研究了与人工智能融入社会相关的社会心理威胁,探讨了诸如偏见、错误信息和隐私侵犯等问题。该手稿提出了一种全面的人工智能可信度方法,将技术和社会缓解措施、标准以及正在进行的研究计划结合起来。此外,它还引入了创新的防御策略,如网络社会演习、数字克隆和对话代理,以增强对对手特征的理解并加强人工智能安全。本文最后呼吁进行跨学科合作、开展宣传活动并持续进行研究努力,以创建一个符合伦理标准和社会期望的强大且有弹性的人工智能生态系统。