Munro Daniel, Ehsan Nava, Esmaeili-Fard Seyed Mehdi, Gusev Alexander, Palmer Abraham A, Mohammadi Pejman
Department of Psychiatry, UC San Diego, La Jolla, CA, USA.
Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.
bioRxiv. 2024 May 15:2024.05.14.594051. doi: 10.1101/2024.05.14.594051.
Transcriptome data is commonly used to understand genome function via quantitative trait loci (QTL) mapping and to identify the molecular mechanisms driving genome wide association study (GWAS) signals through colocalization analysis and transcriptome-wide association studies (TWAS). While RNA sequencing (RNA-seq) has the potential to reveal many modalities of transcriptional regulation, such as various splicing phenotypes, such studies are often limited to gene expression due to the complexity of extracting and analyzing multiple RNA phenotypes. Here, we present Pantry (Pan-transcriptomic phenotyping), a framework to efficiently generate diverse RNA phenotypes from RNA-seq data and perform downstream integrative analyses with genetic data. Pantry currently generates phenotypes from six modalities of transcriptional regulation (gene expression, isoform ratios, splice junction usage, alternative TSS/polyA usage, and RNA stability) and integrates them with genetic data via QTL mapping, TWAS, and colocalization testing. We applied Pantry to Geuvadis and GTEx data, and found that 4,768 of the genes with no identified expression QTL in Geuvadis had QTLs in at least one other transcriptional modality, resulting in a 66% increase in genes over expression QTL mapping. We further found that QTLs exhibit modality-specific functional properties that are further reinforced by joint analysis of different RNA modalities. We also show that generalizing TWAS to multiple RNA modalities (xTWAS) approximately doubles the discovery of unique gene-trait associations, and enhances identification of regulatory mechanisms underlying GWAS signal in 42% of previously associated gene-trait pairs. We provide the Pantry code, RNA phenotypes from all Geuvadis and GTEx samples, and xQTL and xTWAS results on the web.
转录组数据通常用于通过数量性状基因座(QTL)定位来理解基因组功能,并通过共定位分析和全转录组关联研究(TWAS)来识别驱动全基因组关联研究(GWAS)信号的分子机制。虽然RNA测序(RNA-seq)有潜力揭示转录调控的多种模式,如各种剪接表型,但由于提取和分析多种RNA表型的复杂性,此类研究通常仅限于基因表达。在这里,我们展示了Pantry(全转录组表型分析),这是一个从RNA-seq数据中高效生成多种RNA表型并与遗传数据进行下游整合分析的框架。Pantry目前从六种转录调控模式(基因表达、异构体比例、剪接连接使用、替代转录起始位点/多聚腺苷酸化使用和RNA稳定性)生成表型,并通过QTL定位、TWAS和共定位测试将它们与遗传数据整合。我们将Pantry应用于Geuvadis和GTEx数据,发现Geuvadis中未鉴定出表达QTL的4768个基因在至少一种其他转录模式中有QTL,这使得基因数量比表达QTL定位增加了66%。我们进一步发现QTL表现出模式特异性的功能特性,并通过不同RNA模式的联合分析得到进一步加强。我们还表明,将TWAS推广到多种RNA模式(xTWAS)大约使独特基因-性状关联的发现增加了一倍,并在42%的先前相关基因-性状对中增强了对GWAS信号潜在调控机制的识别。我们在网上提供了Pantry代码、所有Geuvadis和GTEx样本的RNA表型以及xQTL和xTWAS结果。