Suppr超能文献

全基因组关联研究(GWAS)和多组学数量性状位点(QTL)汇总统计的联合分析揭示了很大一部分与分子表型共享的GWAS信号。

Joint analysis of GWAS and multi-omics QTL summary statistics reveals a large fraction of GWAS signals shared with molecular phenotypes.

作者信息

Wu Yang, Qi Ting, Wray Naomi R, Visscher Peter M, Zeng Jian, Yang Jian

机构信息

Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.

School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.

出版信息

Cell Genom. 2023 Jun 19;3(8):100344. doi: 10.1016/j.xgen.2023.100344. eCollection 2023 Aug 9.

Abstract

Molecular quantitative trait loci (xQTLs) are often harnessed to prioritize genes or functional elements underpinning variant-trait associations identified from genome-wide association studies (GWASs). Here, we introduce OPERA, a method that jointly analyzes GWAS and multi-omics xQTL summary statistics to enhance the identification of molecular phenotypes associated with complex traits through shared causal variants. Applying OPERA to summary-level GWAS data for 50 complex traits (n = 20,833-766,345) and xQTL data from seven omics layers (n = 100-31,684) reveals that 50% of the GWAS signals are shared with at least one molecular phenotype. GWAS signals shared with multiple molecular phenotypes, such as those at the locus for prostate cancer, are particularly informative for understanding the genetic regulatory mechanisms underlying complex traits. Future studies with more molecular phenotypes, measured considering spatiotemporal effects in larger samples, are required to obtain a more saturated map linking molecular intermediates to GWAS signals.

摘要

分子数量性状基因座(xQTLs)常被用于确定基因或功能元件的优先级,这些基因或功能元件是全基因组关联研究(GWASs)中所识别的变异-性状关联的基础。在此,我们介绍了OPERA,这是一种联合分析GWAS和多组学xQTL汇总统计数据的方法,旨在通过共享的因果变异增强对与复杂性状相关的分子表型的识别。将OPERA应用于50个复杂性状(n = 20,833 - 766,345)的汇总水平GWAS数据以及来自七个组学层面(n = 100 - 31,684)的xQTL数据,结果表明50%的GWAS信号与至少一种分子表型共享。与多种分子表型共享的GWAS信号,如前列腺癌基因座处的信号,对于理解复杂性状背后的遗传调控机制特别有意义。未来需要在更大样本中考虑时空效应来测量更多分子表型的研究,以获得一个将分子中间体与GWAS信号联系起来的更饱和图谱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7027/10435383/80d1acfc5ef8/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验