Suppr超能文献

功能性粘性蜘蛛丝纳米纤维的物理化学性质

Physico-chemical properties of functionally adhesive spider silk nanofibres.

作者信息

Joel Anna-Christin, Rawal Aditya, Yao Yin, Jenner Andrew, Ariotti Nicholas, Weissbach Margret, Adler Lewis, Stafstrom Jay, Blamires Sean J

机构信息

Department of Biological Sciences, Macquarie University, Sydney, Australia.

School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, Australia.

出版信息

Biomater Sci. 2023 Mar 14;11(6):2139-2150. doi: 10.1039/d2bm01599d.

Abstract

Currently, synthetic fibre production focuses primarily on high performance materials. For high performance fibrous materials, such as silks, this involves interpreting the structure-function relationship and downsizing to a smaller scale to then harness those properties within synthetic products. Spiders create an array of fibres that range in size from the micrometre to nanometre scale. At about 20 nm diameter spider cribellate silk, the smallest of these silks, is too small to contain any of the typical secondary protein structures of other spider silks, let alone a hierarchical skin-core-type structure. Here, we performed a multitude of investigations to elucidate the structure of cribellate spider silk. These confirmed our hypothesis that, unlike all other types of spider silk, it has a disordered molecular structure. Alanine and glycine, the two amino acids predominantly found in other spider silks, were much less abundant and did not form the usual α-helices and β-sheet secondary structural arrangements. Correspondingly, we characterized the cribellate silk nanofibre to be very compliant. This characterization matches its function as a dry adhesive within the capture threads of cribellate spiders. Our results imply that at extremely small scales there may be a limit reached below which a silk will lose its structural, but not functional, integrity. Nano-sized fibres, such as cribellate silk, thus offer a new opportunity for inspiring the creation of novel scaled-down functional adhesives and nano meta-materials.

摘要

目前,合成纤维生产主要集中在高性能材料上。对于高性能纤维材料,如丝绸,这涉及解读结构-功能关系并缩小到更小的尺度,以便在合成产品中利用这些特性。蜘蛛能制造一系列尺寸从微米到纳米级的纤维。在这些丝中,直径约20纳米的蜘蛛 cribellate 丝是最小的,小到无法包含其他蜘蛛丝的任何典型二级蛋白质结构,更不用说分层的皮芯型结构了。在此,我们进行了大量研究以阐明 cribellate 蜘蛛丝的结构。这些研究证实了我们的假设,即与所有其他类型的蜘蛛丝不同,它具有无序的分子结构。在其他蜘蛛丝中主要发现的两种氨基酸——丙氨酸和甘氨酸,含量要少得多,并且没有形成通常的α螺旋和β折叠二级结构排列。相应地,我们将 cribellate 丝纳米纤维的特性描述为非常柔顺。这种特性与其作为 cribellate 蜘蛛捕捉丝中的干粘合剂的功能相匹配。我们的结果表明,在极小的尺度下可能会达到一个极限,低于这个极限,丝会失去其结构完整性,但不会失去功能完整性。因此,纳米尺寸的纤维,如 cribellate 丝,为激发新型缩小尺寸的功能粘合剂和纳米超材料的创造提供了新机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验