Thieu Monica K, Ayzenberg Vladislav, Lourenco Stella F, Kragel Philip A
Emory University, Atlanta, GA, USA.
University of Pennsylvania, Philadelphia, PA, USA.
iScience. 2024 May 3;27(6):109886. doi: 10.1016/j.isci.2024.109886. eCollection 2024 Jun 21.
The neural computations for looming detection are strikingly similar across species. In mammals, information about approaching threats is conveyed from the retina to the midbrain superior colliculus, where approach variables are computed to enable defensive behavior. Although neuroscientific theories posit that midbrain representations contribute to emotion through connectivity with distributed brain systems, it remains unknown whether a computational system for looming detection can predict both defensive behavior and phenomenal experience in humans. Here, we show that a shallow convolutional neural network based on the visual system predicts defensive blinking to looming objects in infants and superior colliculus responses to optical expansion in adults. Further, the neural network's responses to naturalistic video clips predict self-reported emotion largely by way of subjective arousal. These findings illustrate how a simple neural network architecture optimized for a species-general task relevant for survival explains motor and experiential components of human emotion.
不同物种之间,用于检测逼近物体的神经计算惊人地相似。在哺乳动物中,关于逼近威胁的信息从视网膜传递到中脑上丘,在那里计算逼近变量以促成防御行为。尽管神经科学理论认为,中脑表征通过与分布式脑系统的连接对情绪产生影响,但用于检测逼近物体的计算系统是否能够预测人类的防御行为和现象体验,目前仍不清楚。在此,我们表明,基于视觉系统的浅层卷积神经网络能够预测婴儿对逼近物体的防御性眨眼以及成年人对上丘光扩张的反应。此外,该神经网络对自然主义视频片段的反应主要通过主观唤醒程度来预测自我报告的情绪。这些发现说明了一个针对与生存相关的物种通用任务进行优化的简单神经网络架构,是如何解释人类情绪的运动和体验成分的。