Suppr超能文献

HelixDiff,一种用于生成全原子α螺旋结构的基于分数的扩散模型。

HelixDiff, a Score-Based Diffusion Model for Generating All-Atom α-Helical Structures.

作者信息

Xie Xuezhi, Valiente Pedro A, Kim Jisun, Kim Philip M

机构信息

Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.

Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada.

出版信息

ACS Cent Sci. 2024 Apr 5;10(5):1001-1011. doi: 10.1021/acscentsci.3c01488. eCollection 2024 May 22.

Abstract

Here, we present HelixDiff, a score-based diffusion model for generating all-atom helical structures. We developed a hot spot-specific generation algorithm for the conditional design of α-helices targeting critical hotspot residues in bioactive peptides. HelixDiff generates α-helices with near-native geometries for most test scenarios with root-mean-square deviations (RMSDs) less than 1 Å. Significantly, HelixDiff outperformed our prior GAN-based model with regard to sequence recovery and Rosetta scores for unconditional and conditional generations. As a proof of principle, we employed HelixDiff to design an acetylated GLP-1 D-peptide agonist that activated the glucagon-like peptide-1 receptor (GLP-1R) cAMP accumulation without stimulating the glucagon-like peptide-2 receptor (GLP-2R). We predicted that this D-peptide agonist has a similar orientation to GLP-1 and is substantially more stable in MD simulations than our earlier D-GLP-1 retro-inverse design. This D-peptide analogue is highly resistant to protease degradation and induces similar levels of AKT phosphorylation in HEK293 cells expressing GLP-1R compared to the native GLP-1. We then discovered that matching crucial hotspots for the GLP-1 function is more important than the sequence orientation of the generated D-peptides when constructing D-GLP-1 agonists.

摘要

在此,我们展示了HelixDiff,一种用于生成全原子螺旋结构的基于分数的扩散模型。我们开发了一种针对热点的特定生成算法,用于有条件地设计靶向生物活性肽中关键热点残基的α螺旋。在大多数测试场景中,HelixDiff生成的α螺旋具有接近天然的几何结构,均方根偏差(RMSD)小于1 Å。值得注意的是,在无条件和有条件生成方面,HelixDiff在序列恢复和Rosetta分数方面优于我们之前基于GAN的模型。作为原理验证,我们使用HelixDiff设计了一种乙酰化的GLP-1 D肽激动剂,该激动剂可激活胰高血糖素样肽-1受体(GLP-1R)的cAMP积累,而不会刺激胰高血糖素样肽-2受体(GLP-2R)。我们预测,这种D肽激动剂与GLP-1具有相似的取向,并且在分子动力学模拟中比我们早期的D-GLP-1逆序设计更稳定。这种D肽类似物对蛋白酶降解具有高度抗性,并且与天然GLP-1相比,在表达GLP-1R的HEK293细胞中诱导相似水平的AKT磷酸化。然后我们发现,在构建D-GLP-1激动剂时,匹配GLP-1功能的关键热点比生成的D肽的序列取向更重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5236/11117309/206d5afcbb19/oc3c01488_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验