HelixGAN:一种用于从头设计α-螺旋结构的条件生成对抗网络方法。
HelixGAN a deep-learning methodology for conditional de novo design of α-helix structures.
机构信息
Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada.
出版信息
Bioinformatics. 2023 Jan 1;39(1). doi: 10.1093/bioinformatics/btad036.
MOTIVATION
Protein and peptide engineering has become an essential field in biomedicine with therapeutics, diagnostics and synthetic biology applications. Helices are both abundant structural feature in proteins and comprise a major portion of bioactive peptides. Precise design of helices for binding or biological activity is still a challenging problem.
RESULTS
Here, we present HelixGAN, the first generative adversarial network method to generate de novo left-handed and right-handed alpha-helix structures from scratch at an atomic level. We developed a gradient-based search approach in latent space to optimize the generation of novel α-helical structures by matching the exact conformations of selected hotspot residues. The designed α-helical structures can bind specific targets or activate cellular receptors. There is a significant agreement between the helix structures generated with HelixGAN and PEP-FOLD, a well-known de novo approach for predicting peptide structures from amino acid sequences. HelixGAN outperformed RosettaDesign, and our previously developed structural similarity method to generate D-peptides matching a set of given hotspots in a known L-peptide. As proof of concept, we designed a novel D-GLP1_1 analog that matches the conformations of critical hotspots for the GLP1 function. MD simulations revealed a stable binding mode of the D-GLP1_1 analog coupled to the GLP1 receptor. This novel D-peptide analog is more stable than our previous D-GLP1 design along the MD simulations. We envision HelixGAN as a critical tool for designing novel bioactive peptides with specific properties in the early stages of drug discovery.
AVAILABILITY AND IMPLEMENTATION
https://github.com/xxiexuezhi/helix_gan.
SUPPLEMENTARY INFORMATION
Supplementary data are available at Bioinformatics online.
动机
蛋白质和肽工程已成为生物医学领域的一个重要分支,在治疗、诊断和合成生物学应用方面具有重要意义。螺旋结构在蛋白质中广泛存在,并且构成了许多生物活性肽的主要部分。精确设计具有结合或生物活性的螺旋仍然是一个具有挑战性的问题。
结果
在这里,我们提出了 HelixGAN,这是第一个从头开始在原子水平上生成新型左手和右手α-螺旋结构的生成对抗网络方法。我们开发了一种基于梯度的搜索方法在潜在空间中优化新型α-螺旋结构的生成,通过匹配选定热点残基的精确构象来实现。设计的α-螺旋结构可以与特定的靶标结合或激活细胞受体。HelixGAN 生成的螺旋结构与 PEP-FOLD(一种著名的从头预测肽结构的方法)之间存在显著的一致性。HelixGAN 优于 RosettaDesign,以及我们之前开发的用于生成与已知 L-肽中一组给定热点匹配的 D-肽的结构相似性方法。作为概念验证,我们设计了一种新型的 D-GLP1_1 类似物,该类似物匹配 GLP1 功能的关键热点构象。MD 模拟揭示了 D-GLP1_1 类似物与 GLP1 受体结合的稳定模式。与我们之前的 D-GLP1 设计相比,这种新型 D-肽类似物在 MD 模拟过程中更加稳定。我们设想 HelixGAN 是在药物发现的早期阶段设计具有特定性质的新型生物活性肽的关键工具。
可用性和实现
https://github.com/xxiexuezhi/helix_gan。
补充信息
补充数据可在 Bioinformatics 在线获取。