文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

TIMeless 和 PARP1 的相互作用抑制与复制相关的 DNA 缺口积累。

The TIMELESS and PARP1 interaction suppresses replication-associated DNA gap accumulation.

机构信息

Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.

The Graduate program in Genetics, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.

出版信息

Nucleic Acids Res. 2024 Jun 24;52(11):6424-6440. doi: 10.1093/nar/gkae445.


DOI:10.1093/nar/gkae445
PMID:38801073
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11194094/
Abstract

TIMELESS (TIM) in the fork protection complex acts as a scaffold of the replisome to prevent its uncoupling and ensure efficient DNA replication fork progression. Nevertheless, its underlying basis for coordinating leading and lagging strand synthesis to limit single-stranded DNA (ssDNA) exposure remains elusive. Here, we demonstrate that acute degradation of TIM at ongoing DNA replication forks induces the accumulation of ssDNA gaps stemming from defective Okazaki fragment (OF) processing. Cells devoid of TIM fail to support the poly(ADP-ribosyl)ation necessary for backing up the canonical OF processing mechanism mediated by LIG1 and FEN1. Consequently, recruitment of XRCC1, a known effector of PARP1-dependent single-strand break repair, to post-replicative ssDNA gaps behind replication forks is impaired. Physical disruption of the TIM-PARP1 complex phenocopies the rapid loss of TIM, indicating that the TIM-PARP1 interaction is critical for the activation of this compensatory pathway. Accordingly, combined deficiency of FEN1 and the TIM-PARP1 interaction leads to synergistic DNA damage and cytotoxicity. We propose that TIM is essential for the engagement of PARP1 to the replisome to coordinate lagging strand synthesis with replication fork progression. Our study identifies TIM as a synthetic lethal target of OF processing enzymes that can be exploited for cancer therapy.

摘要

时无(TIM)在叉保护复合物中作为复制体的支架,以防止其解偶联并确保有效的 DNA 复制叉进展。然而,其协调前导链和滞后链合成以限制单链 DNA(ssDNA)暴露的基础仍然难以捉摸。在这里,我们证明在正在进行的 DNA 复制叉处急性降解 TIM 会诱导源自缺陷的 Okazaki 片段(OF)加工的 ssDNA 缺口的积累。缺乏 TIM 的细胞无法支持多聚(ADP-核糖基)化,该过程对于由 LIG1 和 FEN1 介导的经典 OF 加工机制的备份是必需的。因此,PARP1 依赖性单链断裂修复的已知效应物 XRCC1 招募到复制叉后复制后 ssDNA 缺口的能力受损。TIM-PARP1 复合物的物理破坏模拟了 TIM 的快速丢失,表明 TIM-PARP1 相互作用对于该补偿途径的激活至关重要。因此,FEN1 和 TIM-PARP1 相互作用的联合缺乏会导致协同的 DNA 损伤和细胞毒性。我们提出 TIM 对于 PARP1 与复制体的结合是必需的,以协调滞后链合成与复制叉进展。我们的研究确定 TIM 是 OF 加工酶的合成致死靶标,可用于癌症治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28df/11194094/d2ae4758cfec/gkae445fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28df/11194094/04db278a2983/gkae445figgra1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28df/11194094/050ac1499b3c/gkae445fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28df/11194094/7d9fee759f81/gkae445fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28df/11194094/6230b46240fe/gkae445fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28df/11194094/800a7cafa330/gkae445fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28df/11194094/e074518023fd/gkae445fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28df/11194094/ec9849d50a4e/gkae445fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28df/11194094/d2ae4758cfec/gkae445fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28df/11194094/04db278a2983/gkae445figgra1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28df/11194094/050ac1499b3c/gkae445fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28df/11194094/7d9fee759f81/gkae445fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28df/11194094/6230b46240fe/gkae445fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28df/11194094/800a7cafa330/gkae445fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28df/11194094/e074518023fd/gkae445fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28df/11194094/ec9849d50a4e/gkae445fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28df/11194094/d2ae4758cfec/gkae445fig7.jpg

相似文献

[1]
The TIMELESS and PARP1 interaction suppresses replication-associated DNA gap accumulation.

Nucleic Acids Res. 2024-6-24

[2]
The Importance of Poly(ADP-Ribose) Polymerase as a Sensor of Unligated Okazaki Fragments during DNA Replication.

Mol Cell. 2018-7-5

[3]
Poly(ADP-ribosyl)ation of TIMELESS limits DNA replication stress and promotes stalled fork protection.

Cell Rep. 2024-3-26

[4]
XRCC1 prevents toxic PARP1 trapping during DNA base excision repair.

Mol Cell. 2021-7-15

[5]
Tim-Tipin dysfunction creates an indispensible reliance on the ATR-Chk1 pathway for continued DNA synthesis.

J Cell Biol. 2009-10-5

[6]
TIMELESS Forms a Complex with PARP1 Distinct from Its Complex with TIPIN and Plays a Role in the DNA Damage Response.

Cell Rep. 2015-10-20

[7]
SDE2 integrates into the TIMELESS-TIPIN complex to protect stalled replication forks.

Nat Commun. 2020-10-30

[8]
HPF1-dependent PARP activation promotes LIG3-XRCC1-mediated backup pathway of Okazaki fragment ligation.

Nucleic Acids Res. 2021-5-21

[9]
Single-Nucleotide Polymorphisms of Genes Involved in Repair of Oxidative DNA Damage and the Risk of Recurrent Depressive Disorder.

Med Sci Monit. 2016-11-20

[10]
PARP1 and XRCC1 exhibit a reciprocal relationship in genotoxic stress response.

Cell Biol Toxicol. 2023-2

引用本文的文献

[1]
FANCA Deficiency Induces Oncogenic R-Loop Dependent Synthetic Lethality with PARP1 Inhibitors.

Res Sq. 2025-7-3

[2]
The DNA-PKcs/JNK/p53 pathway underlies changes in cell fate decision toward death during DNA replication catastrophe.

Nucleic Acids Res. 2025-6-20

[3]
Targeting Replication Fork Processing Synergizes with PARP Inhibition to Potentiate Lethality in Homologous Recombination Proficient Ovarian Cancers.

Adv Sci (Weinh). 2025-5

[4]
Identification of modulators of the ALT pathway through a native FISH-based optical screen.

Cell Rep. 2025-1-28

[5]
Identification of Novel Modulators of the ALT Pathway Through a Native FISH-Based Optical Screen.

bioRxiv. 2024-11-15

[6]
Positioning loss of PARP1 activity as the central toxic event in BRCA-deficient cancer.

DNA Repair (Amst). 2024-12

[7]
The Influence of Circadian Rhythms on DNA Damage Repair in Skin Photoaging.

Int J Mol Sci. 2024-10-11

[8]
Tolerance of Oncogene-Induced Replication Stress: A Fuel for Genomic Instability.

Cancers (Basel). 2024-10-17

本文引用的文献

[1]
Poly(ADP-ribosyl)ation of TIMELESS limits DNA replication stress and promotes stalled fork protection.

Cell Rep. 2024-3-26

[2]
How Pol α-primase is targeted to replisomes to prime eukaryotic DNA replication.

Mol Cell. 2023-8-17

[3]
The Adaptive Mechanisms and Checkpoint Responses to a Stressed DNA Replication Fork.

Int J Mol Sci. 2023-6-22

[4]
Replisome dysfunction upon inducible TIMELESS degradation synergizes with ATR inhibition to trigger replication catastrophe.

Nucleic Acids Res. 2023-7-7

[5]
The TIMELESS effort for timely DNA replication and protection.

Cell Mol Life Sci. 2023-3-9

[6]
PARP1 proximity proteomics reveals interaction partners at stressed replication forks.

Nucleic Acids Res. 2022-11-11

[7]
Small-Molecule Inhibitors Targeting FEN1 for Cancer Therapy.

Biomolecules. 2022-7-20

[8]
Extended DNA-binding interfaces beyond the canonical SAP domain contribute to the function of replication stress regulator SDE2 at DNA replication forks.

J Biol Chem. 2022-8

[9]
Fast and efficient DNA replication with purified human proteins.

Nature. 2022-6

[10]
PARP inhibition impedes the maturation of nascent DNA strands during DNA replication.

Nat Struct Mol Biol. 2022-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索