BioSensics, LLC, 57 Chapel Street, Newton, MA, 02458, USA.
Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, 330 Brookline Avenue, Stoneman 10, Boston, MA, 02215, USA.
Sci Rep. 2024 May 27;14(1):12046. doi: 10.1038/s41598-024-63001-2.
Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240-310% by 2050. Hip fractures are predominantly diagnosed by radiologist review of radiographs. In this study, we developed a deep learning model by extending the VarifocalNet Feature Pyramid Network (FPN) for detection and localization of proximal femur fractures from plain radiography with clinically relevant metrics. We used a dataset of 823 hip radiographs of 150 subjects with proximal femur fractures and 362 controls to develop and evaluate the deep learning model. Our model attained 0.94 specificity and 0.95 sensitivity in fracture detection over the diverse imaging dataset. We compared the performance of our model against five benchmark FPN models, demonstrating 6-14% sensitivity and 1-9% accuracy improvement. In addition, we demonstrated that our model outperforms a state-of-the-art transformer model based on DINO network by 17% sensitivity and 5% accuracy, while taking half the time on average to process a radiograph. The developed model can aid radiologists and support on-premise integration with hospital cloud services to enable automatic, opportunistic screening for hip fractures.
美国每年髋部骨折超过 25 万例,预计到 2050 年,全球发病率将增加 240-310%。髋部骨折主要通过放射科医生对 X 光片的审查来诊断。在这项研究中,我们通过扩展 VarifocalNet 特征金字塔网络 (FPN),开发了一个深度学习模型,用于从普通 X 光片中检测和定位股骨近端骨折,并具有临床相关的指标。我们使用了一个包含 150 名股骨近端骨折患者和 362 名对照者的 823 张髋部 X 光片数据集来开发和评估深度学习模型。我们的模型在不同的成像数据集上实现了 0.94 的特异性和 0.95 的骨折检测灵敏度。我们将我们的模型与五个基准 FPN 模型进行了比较,证明了灵敏度提高了 6-14%,准确率提高了 1-9%。此外,我们还证明,我们的模型比基于 DINO 网络的最先进的转换器模型的灵敏度提高了 17%,准确率提高了 5%,同时处理一张 X 光片的平均时间缩短了一半。开发的模型可以辅助放射科医生,并支持与医院云服务的本地集成,从而实现髋部骨折的自动、机会性筛查。
Clin Orthop Relat Res. 2023-3-1
Int J Comput Assist Radiol Surg. 2020-4-25
Diagnostics (Basel). 2025-1-23
J Imaging Inform Med. 2024-12-11
Proc IEEE Inst Electr Electron Eng. 2021-5
iScience. 2023-7-11
Bioengineering (Basel). 2023-6-19
Med Image Anal. 2023-8
J Orthop Surg Res. 2022-12-1
Front Bioeng Biotechnol. 2022-9-6
Injury. 2022-7