文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于特征金字塔网络的普通 X 射线摄影术股骨近端骨折检测。

Proximal femur fracture detection on plain radiography via feature pyramid networks.

机构信息

BioSensics, LLC, 57 Chapel Street, Newton, MA, 02458, USA.

Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, 330 Brookline Avenue, Stoneman 10, Boston, MA, 02215, USA.

出版信息

Sci Rep. 2024 May 27;14(1):12046. doi: 10.1038/s41598-024-63001-2.


DOI:10.1038/s41598-024-63001-2
PMID:38802519
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11130146/
Abstract

Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240-310% by 2050. Hip fractures are predominantly diagnosed by radiologist review of radiographs. In this study, we developed a deep learning model by extending the VarifocalNet Feature Pyramid Network (FPN) for detection and localization of proximal femur fractures from plain radiography with clinically relevant metrics. We used a dataset of 823 hip radiographs of 150 subjects with proximal femur fractures and 362 controls to develop and evaluate the deep learning model. Our model attained 0.94 specificity and 0.95 sensitivity in fracture detection over the diverse imaging dataset. We compared the performance of our model against five benchmark FPN models, demonstrating 6-14% sensitivity and 1-9% accuracy improvement. In addition, we demonstrated that our model outperforms a state-of-the-art transformer model based on DINO network by 17% sensitivity and 5% accuracy, while taking half the time on average to process a radiograph. The developed model can aid radiologists and support on-premise integration with hospital cloud services to enable automatic, opportunistic screening for hip fractures.

摘要

美国每年髋部骨折超过 25 万例,预计到 2050 年,全球发病率将增加 240-310%。髋部骨折主要通过放射科医生对 X 光片的审查来诊断。在这项研究中,我们通过扩展 VarifocalNet 特征金字塔网络 (FPN),开发了一个深度学习模型,用于从普通 X 光片中检测和定位股骨近端骨折,并具有临床相关的指标。我们使用了一个包含 150 名股骨近端骨折患者和 362 名对照者的 823 张髋部 X 光片数据集来开发和评估深度学习模型。我们的模型在不同的成像数据集上实现了 0.94 的特异性和 0.95 的骨折检测灵敏度。我们将我们的模型与五个基准 FPN 模型进行了比较,证明了灵敏度提高了 6-14%,准确率提高了 1-9%。此外,我们还证明,我们的模型比基于 DINO 网络的最先进的转换器模型的灵敏度提高了 17%,准确率提高了 5%,同时处理一张 X 光片的平均时间缩短了一半。开发的模型可以辅助放射科医生,并支持与医院云服务的本地集成,从而实现髋部骨折的自动、机会性筛查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8da9/11130146/74163bb2339a/41598_2024_63001_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8da9/11130146/1776fd3679f3/41598_2024_63001_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8da9/11130146/5756153e9260/41598_2024_63001_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8da9/11130146/55fc1157894b/41598_2024_63001_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8da9/11130146/74163bb2339a/41598_2024_63001_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8da9/11130146/1776fd3679f3/41598_2024_63001_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8da9/11130146/5756153e9260/41598_2024_63001_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8da9/11130146/55fc1157894b/41598_2024_63001_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8da9/11130146/74163bb2339a/41598_2024_63001_Fig4_HTML.jpg

相似文献

[1]
Proximal femur fracture detection on plain radiography via feature pyramid networks.

Sci Rep. 2024-5-27

[2]
Automated classification of hip fractures using deep convolutional neural networks with orthopedic surgeon-level accuracy: ensemble decision-making with antero-posterior and lateral radiographs.

Acta Orthop. 2020-12

[3]
Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs.

Eur Radiol. 2019-4-1

[4]
Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network.

Skeletal Radiol. 2019-2

[5]
The effect of deep convolutional neural networks on radiologists' performance in the detection of hip fractures on digital pelvic radiographs.

Eur J Radiol. 2020-9

[6]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[7]
Deep Learning Assistance Closes the Accuracy Gap in Fracture Detection Across Clinician Types.

Clin Orthop Relat Res. 2023-3-1

[8]
Computed tomography for occult fractures of the proximal femur, pelvis, and sacrum in clinical practice: single institution, dual-site experience.

Emerg Radiol. 2018-6

[9]
Predicting intertrochanteric extension of greater trochanter fractures of the hip on plain radiographs.

Injury. 2017-3

[10]
Precise proximal femur fracture classification for interactive training and surgical planning.

Int J Comput Assist Radiol Surg. 2020-4-25

引用本文的文献

[1]
Exploring the impact of hyperparameter and data augmentation in YOLO V10 for accurate bone fracture detection from X-ray images.

Sci Rep. 2025-3-21

[2]
Lightweight Deep Learning Framework for Accurate Detection of Sports-Related Bone Fractures.

Diagnostics (Basel). 2025-1-23

[3]
Deep Learning-Based Body Composition Analysis for Cancer Patients Using Computed Tomographic Imaging.

J Imaging Inform Med. 2024-12-11

[4]
Artificial intelligence in fracture detection on radiographs: a literature review.

Jpn J Radiol. 2025-4

[5]
Classification of AO/OTA 31A/B femur fractures in X-ray images using YOLOv8 and advanced data augmentation techniques.

Bone Rep. 2024-9-16

本文引用的文献

[1]
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises.

Proc IEEE Inst Electr Electron Eng. 2021-5

[2]
Application of a deep learning algorithm in the detection of hip fractures.

iScience. 2023-7-11

[3]
FracAtlas: A Dataset for Fracture Classification, Localization and Segmentation of Musculoskeletal Radiographs.

Sci Data. 2023-8-5

[4]
The Application of Design Thinking in Developing a Deep Learning Algorithm for Hip Fracture Detection.

Bioengineering (Basel). 2023-6-19

[5]
Detection of incomplete atypical femoral fracture on anteroposterior radiographs via explainable artificial intelligence.

Sci Rep. 2023-6-27

[6]
Transformers in medical imaging: A survey.

Med Image Anal. 2023-8

[7]
Artificial intelligence and machine learning on diagnosis and classification of hip fracture: systematic review.

J Orthop Surg Res. 2022-12-1

[8]
A semi-supervised multi-task learning framework for cancer classification with weak annotation in whole-slide images.

Med Image Anal. 2023-1

[9]
Artificial intelligence to detect the femoral intertrochanteric fracture: The arrival of the intelligent-medicine era.

Front Bioeng Biotechnol. 2022-9-6

[10]
Vision Transformer for femur fracture classification.

Injury. 2022-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索