Suppr超能文献

FracAtlas:用于肌肉骨骼 X 光片骨折分类、定位和分割的数据集。

FracAtlas: A Dataset for Fracture Classification, Localization and Segmentation of Musculoskeletal Radiographs.

机构信息

Islamic University of Technology, Gazipur, 1704, Bangladesh.

United International University, Dhaka, 1212, Bangladesh.

出版信息

Sci Data. 2023 Aug 5;10(1):521. doi: 10.1038/s41597-023-02432-4.

Abstract

Digital radiography is one of the most common and cost-effective standards for the diagnosis of bone fractures. For such diagnoses expert intervention is required which is time-consuming and demands rigorous training. With the recent growth of computer vision algorithms, there is a surge of interest in computer-aided diagnosis. The development of algorithms demands large datasets with proper annotations. Existing X-Ray datasets are either small or lack proper annotation, which hinders the development of machine-learning algorithms and evaluation of the relative performance of algorithms for classification, localization, and segmentation. We present FracAtlas, a new dataset of X-Ray scans curated from the images collected from 3 major hospitals in Bangladesh. Our dataset includes 4,083 images that have been manually annotated for bone fracture classification, localization, and segmentation with the help of 2 expert radiologists and an orthopedist using the open-source labeling platform, makesense.ai. There are 717 images with 922 instances of fractures. Each of the fracture instances has its own mask and bounding box, whereas the scans also have global labels for classification tasks. We believe the dataset will be a valuable resource for researchers interested in developing and evaluating machine learning algorithms for bone fracture diagnosis.

摘要

数字 X 射线摄影是诊断骨折最常见和最具成本效益的标准之一。对于这种诊断,需要专家干预,这既耗时又需要严格的培训。随着计算机视觉算法的最近发展,对计算机辅助诊断产生了浓厚的兴趣。算法的开发需要带有适当注释的大型数据集。现有的 X 射线数据集要么很小,要么缺乏适当的注释,这阻碍了机器学习算法的发展和对分类、定位和分割算法的相对性能的评估。我们提出了 FracAtlas,这是一个从孟加拉国 3 家主要医院收集的 X 射线扫描图像中整理出来的新数据集。我们的数据集包括 4083 张图像,这些图像已经由 2 名放射科专家和 1 名骨科医生使用开源标记平台 makesense.ai 进行了手动注释,用于骨折分类、定位和分割。有 717 张图像有 922 个骨折实例。每个骨折实例都有自己的遮罩和边界框,而扫描也有分类任务的全局标签。我们相信,对于有兴趣开发和评估用于骨折诊断的机器学习算法的研究人员来说,该数据集将是一个有价值的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129b/10404222/bacf29b29034/41597_2023_2432_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验