Suppr超能文献

用于评估人工制品在新南威尔士州乳腺癌筛查计划中进行放射科报告的用途适用性的协议。

Protocol for evaluating the fitness for purpose of an artificial intelligence product for radiology reporting in the BreastScreen New South Wales breast cancer screening programme.

机构信息

Cancer Institute NSW, St Leonards, New South Wales, Australia

Cancer Institute NSW, St Leonards, New South Wales, Australia.

出版信息

BMJ Open. 2024 May 28;14(5):e082350. doi: 10.1136/bmjopen-2023-082350.

Abstract

INTRODUCTION

Radiologist shortages threaten the sustainability of breast cancer screening programmes. Artificial intelligence (AI) products that can interpret mammograms could mitigate this risk. While previous studies have suggested this technology has accuracy comparable to radiologists most have been limited by using 'enriched' datasets and/or not considering the interaction between the algorithm and human readers. This study will address these limitations by comparing the accuracy of a workflow using AI alongside radiologists on a large consecutive cohort of examinations from a breast cancer screening programme. The study will combine the strengths of a large retrospective design with the benefit of prospective data collection. It will test this technology without risk to screening programme participants nor the need to wait for follow-up data. With a sample of 2 years of consecutive screening examinations, it is likely the largest test of this technology to date. The study will help determine whether this technology can safely be introduced into the BreastScreen New South Wales (NSW) population-based screening programme to address radiology workforce risks without compromising cancer detection rates or increasing false-positive recalls.

METHODS AND ANALYSIS

A retrospective, consecutive cohort of digital mammography screens from 658 207 examinations from BreastScreen NSW will be reinterpreted by the Lunit Insight MMG AI product. The cohort includes 4383 screen-detected and 1171 interval cancers. The results will be compared with radiologist single reading and the AI results will also be used to replace the second reader in a double-reading model. New adjudication reading will be performed where the AI disagrees with the first reader. Recall rates and cancer detection rates of combined AI-radiologist reading will be compared with the rates obtained at the time of screening.

ETHICS AND DISSEMINATION

This study has ethical approval from the NSW Health Population Health Services Research Ethics Committee (2022/ETH02397). Findings will be published in peer-reviewed journals and presented at conferences. The findings of this evaluation will be provided to programme managers, governance bodies and other stakeholders in Australian breast cancer screening programmes.

摘要

简介

放射科医生短缺威胁着乳腺癌筛查计划的可持续性。能够解读乳房 X 光片的人工智能 (AI) 产品可以缓解这一风险。虽然之前的研究表明,这项技术的准确性可与放射科医生相媲美,但大多数研究都受到了使用“丰富”数据集和/或不考虑算法与人工读者之间相互作用的限制。本研究将通过在一个大型乳腺癌筛查计划的连续检查队列中比较使用 AI 与放射科医生的工作流程的准确性来解决这些限制。该研究将结合大型回顾性设计的优势和前瞻性数据收集的优势。它将在不影响筛查计划参与者的情况下对该技术进行测试,也无需等待随访数据。通过对 2 年连续筛查检查的样本进行测试,这可能是迄今为止对该技术的最大测试。该研究将有助于确定这项技术是否可以安全地引入新南威尔士州 (NSW) 基于人群的乳腺癌筛查计划,以解决放射科医生劳动力风险,而不会降低癌症检出率或增加假阳性召回率。

方法和分析

将对来自新南威尔士州乳腺癌筛查计划的 658207 次数字乳房 X 光检查的回顾性连续队列进行重新解读,使用 Lunit Insight MMG AI 产品。该队列包括 4383 例筛查发现的癌症和 1171 例间隔期癌症。结果将与放射科医生的单次阅读进行比较,AI 的结果也将用于替代双读模型中的第二位读者。当 AI 与第一位读者意见不一致时,将进行新的裁决阅读。将比较 AI-放射科医生联合阅读的召回率和癌症检出率与筛查时获得的比率。

伦理和传播

本研究已获得新南威尔士州卫生人口健康服务伦理委员会的伦理批准 (2022/ETH02397)。研究结果将发表在同行评议的期刊上,并在会议上发表。该评估的结果将提供给澳大利亚乳腺癌筛查计划的项目管理人员、管理机构和其他利益相关者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f6d/11138303/26d4bee66431/bmjopen-2023-082350f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验